Pregunta
upstudy study bank question image url

The reduced row echelon form of the augmented matrix of a system of equations is given. Find the solutions of the system. Select the correct choice below and, if necessary, fill in the answer boxes to complete your choice. \( \left.\begin{array}{llll|l}1 & 0 & 0 & 0 & 1 / 5 \\ \text { A. The system has exactly one solution. The solution is }(\square & 1 & 0 & 0 & 4 \\ 0 & \\ 0 & 0 & 1 & 0 & 2 \\ 0 & 0 & 0 & 1 & 2\end{array}\right] \) (Type integers or fractions.) B. The system has infinitely many solutions of the form (Type integers or fractions.)

Ask by Williams Campos. in the United States
Feb 21,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The system has exactly one solution: \( x_1 = \frac{1}{5} \), \( x_2 = 4 \), \( x_3 = 2 \), and \( x_4 = 2 \).

Solución

To analyze the given reduced row echelon form of the augmented matrix, we can extract the information about the system of equations it represents. The matrix is: \[ \begin{array}{cccc|c} 1 & 0 & 0 & 0 & \frac{1}{5} \\ 0 & 1 & 0 & 0 & 4 \\ 0 & 0 & 1 & 0 & 2 \\ 0 & 0 & 0 & 1 & 2 \end{array} \] This matrix corresponds to the following system of equations: 1. \( x_1 = \frac{1}{5} \) 2. \( x_2 = 4 \) 3. \( x_3 = 2 \) 4. \( x_4 = 2 \) ### Step 1: Identify the type of solution From the matrix, we can see that each variable \( x_1, x_2, x_3, \) and \( x_4 \) has a unique value assigned to it. This indicates that the system has exactly one solution. ### Step 2: Write the solution The solution to the system can be expressed as: \[ (x_1, x_2, x_3, x_4) = \left(\frac{1}{5}, 4, 2, 2\right) \] ### Conclusion Thus, the correct choice is: **A. The system has exactly one solution. The solution is** \(\left(\frac{1}{5}, 4, 2, 2\right)\).

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

Alright! Let’s tackle this puzzle together. From the reduced row echelon form of the augmented matrix, we can see that there are leading ones in the first, second, and third columns, which indicates that this system has three basic variables and no free variables. This leads us to conclude that the system has exactly one solution. By interpreting the last column of the matrix, it tells us what the values of the variables are. Thus, the complete solution remains: **A. The system has exactly one solution. The solution is \( \left( \frac{1}{5}, 4, 0, 2 \right) \).**

preguntas relacionadas

Latest Algebra Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad