7. (a) \( 3^{x}=\sqrt[4]{3^{5}} \) Find the value of \( x \). \( \square \) :mwilecth givinu \( \square \) -hubloin bluedz uoy (b) Simplify \( \left(32 y^{15}\right)^{\frac{2}{2}} \). 8. Find the values of \( m \) and \( n \). (a) \( 2^{m}=0.125 \) Anstiots ad -104. fais inuanm pa patini 6 al nothamolal gmtos insingho iil gized smae griad tamal bidssingosen -ationh mionalias 10 - inje smoz Aifive noitacmetm litahupe sit (b) \( 2^{4 n} \times 2^{2 n}=512 \)
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Extra Insights
To tackle the equation \( 3^{x}=\sqrt[4]{3^{5}} \), let’s first simplify the right side. The fourth root of \( 3^{5} \) can be expressed as \( 3^{5/4} \). Setting the exponents equal to each other gives us \( x = \frac{5}{4} \). So, voilà! You’ve found your \( x \)! As for the simplification \( \left(32 y^{15}\right)^{\frac{2}{2}} \), notice that \( \frac{2}{2} \) simplifies to 1. This means you're left with simply \( 32 y^{15} \). It’s like giving the expression a gentle nudge to reveal its simplest form—easy peasy! Now, moving on to the next part. For \( 2^{m}=0.125 \), remember that \( 0.125 \) can be rewritten as \( \frac{1}{8} \), which is \( 2^{-3} \). Thus, \( m = -3 \). Lastly, in the equation \( 2^{4 n} \times 2^{2 n}=512 \), we combine the exponents to get \( 2^{6n} = 512 \). Since \( 512 = 2^9 \), we equate \( 6n = 9 \), leading to \( n = \frac{3}{2} \). Such prime number powers, who knew they could lead to such findings!
