Pregunta
upstudy study bank question image url

1) Simplify the following expressions: a) \( \sin ^{2} 108^{\circ}+\sin ^{2} 18^{\circ} \) (b) \( \frac{\sin \left(360^{\circ}-\theta\right) \cos \left(180^{\circ}+\theta\right)}{\sin \left(270^{\circ}\right) \cos \left(360^{\circ}-\theta\right) \sin (90+\theta)} \) 2) Prove the following trigonometric identities. You \( m \) a) \( \sin x \tan x+\cos x=\frac{1}{\cos x} \) b) \( \frac{\cos x}{1-\sin x}-\frac{\cos x}{1+\sin x}=2 \tan x \) 3) Determine the value of \( \sin \theta \cos \theta \) if \( \tan \theta=\frac{3}{4} \) and Compound Angles

Ask by Li Peters. in South Africa
Feb 26,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

1. a) \( 1 \) b) \( \tan(\theta) \) 2. a) Proven b) Proven 3. \( \sin \theta \cos \theta = \frac{12}{25} \)

Solución

Solve the equation by following steps: - step0: Solve for \(\theta\): \(\tan\left(\theta \right)=\frac{3}{4}\) - step1: Find the domain: \(\tan\left(\theta \right)=\frac{3}{4},\theta \neq \frac{\pi }{2}+k\pi ,k \in \mathbb{Z}\) - step2: Use the inverse trigonometric function: \(\theta =\arctan\left(\frac{3}{4}\right)\) - step3: Add the period: \(\theta =\arctan\left(\frac{3}{4}\right)+k\pi ,k \in \mathbb{Z}\) - step4: Check if the solution is in the defined range: \(\theta =\arctan\left(\frac{3}{4}\right)+k\pi ,k \in \mathbb{Z},\theta \neq \frac{\pi }{2}+k\pi ,k \in \mathbb{Z}\) - step5: Find the intersection: \(\theta =\arctan\left(\frac{3}{4}\right)+k\pi ,k \in \mathbb{Z}\) Calculate or simplify the expression \( \sin(108)^2 + \sin(18)^2 \). Calculate the value by following steps: - step0: Calculate: \(\sin\left(108^{2}\right)+\sin\left(18^{2}\right)\) - step1: Transform the expression: \(2\sin\left(5994\right)\cos\left(5670\right)\) - step2: Transform the expression: \(\sin\left(11664\right)+\sin\left(324\right)\) Determine whether the expression \( \sin(x) * \tan(x) + \cos(x) = 1/\cos(x) \) is always true. Verify the identity by following steps: - step0: Verify: \(\sin\left(x\right)\tan\left(x\right)+\cos\left(x\right)=\frac{1}{\cos\left(x\right)}\) - step1: Choose a side to work on: \(\frac{1}{\cos\left(x\right)}=\frac{1}{\cos\left(x\right)}\) - step2: Verify the identity: \(\textrm{true}\) Solve the equation \( \tan(\theta) = 3/4 \). Solve the equation by following steps: - step0: Solve for \(\theta\): \(\tan\left(\theta \right)=\frac{3}{4}\) - step1: Find the domain: \(\tan\left(\theta \right)=\frac{3}{4},\theta \neq \frac{\pi }{2}+k\pi ,k \in \mathbb{Z}\) - step2: Use the inverse trigonometric function: \(\theta =\arctan\left(\frac{3}{4}\right)\) - step3: Add the period: \(\theta =\arctan\left(\frac{3}{4}\right)+k\pi ,k \in \mathbb{Z}\) - step4: Check if the solution is in the defined range: \(\theta =\arctan\left(\frac{3}{4}\right)+k\pi ,k \in \mathbb{Z},\theta \neq \frac{\pi }{2}+k\pi ,k \in \mathbb{Z}\) - step5: Find the intersection: \(\theta =\arctan\left(\frac{3}{4}\right)+k\pi ,k \in \mathbb{Z}\) Determine whether the expression \( (\cos(x)/(1-\sin(x))) - (\cos(x)/(1+\sin(x))) = 2*\tan(x) \) is always true. Verify the identity by following steps: - step0: Verify: \(\left(\frac{\cos\left(x\right)}{\left(1-\sin\left(x\right)\right)}\right)-\left(\frac{\cos\left(x\right)}{\left(1+\sin\left(x\right)\right)}\right)=2\tan\left(x\right)\) - step1: Choose a side to work on: \(2\tan\left(x\right)=2\tan\left(x\right)\) - step2: Verify the identity: \(\textrm{true}\) Calculate or simplify the expression \( (\sin(360 - \theta) * \cos(180 + \theta)) / (\sin(270) * \cos(360 - \theta) * \sin(90 + \theta)) \). Simplify the expression by following steps: - step0: Solution: \(\frac{\left(\sin\left(360-\theta \right)\cos\left(180+\theta \right)\right)}{\left(\sin\left(270\right)\cos\left(360-\theta \right)\sin\left(90+\theta \right)\right)}\) - step1: Remove the parentheses: \(\frac{\sin\left(360-\theta \right)\cos\left(180+\theta \right)}{\sin\left(270\right)\cos\left(360-\theta \right)\sin\left(90+\theta \right)}\) - step2: Rewrite the expression: \(\frac{\sin\left(360-\theta \right)\cos\left(\theta +180\right)}{\sin\left(270\right)\cos\left(360-\theta \right)\sin\left(90+\theta \right)}\) - step3: Rewrite the expression: \(\frac{\sin\left(360-\theta \right)\cos\left(\theta +180\right)}{\sin\left(270\right)\cos\left(360-\theta \right)\sin\left(\theta +90\right)}\) - step4: Transform the expression: \(\frac{\cos\left(\theta +180\right)\tan\left(360-\theta \right)}{\sin\left(270\right)\sin\left(\theta +90\right)}\) - step5: Transform the expression: \(\cos\left(\theta +180\right)\tan\left(360-\theta \right)\csc\left(270\right)\csc\left(\theta +90\right)\) - step6: Rewrite the expression: \(\csc\left(270\right)\cos\left(\theta +180\right)\tan\left(360-\theta \right)\csc\left(\theta +90\right)\) Let's go through each part of your problem step by step. ### 1) Simplify the following expressions: #### a) \( \sin ^{2} 108^{\circ}+\sin ^{2} 18^{\circ} \) Using the identity \( \sin(90^\circ + x) = \cos(x) \), we can rewrite \( \sin(108^\circ) \) as: \[ \sin(108^\circ) = \sin(90^\circ + 18^\circ) = \cos(18^\circ) \] Thus, we have: \[ \sin^2(108^\circ) = \cos^2(18^\circ) \] Now, using the Pythagorean identity \( \sin^2(x) + \cos^2(x) = 1 \): \[ \sin^2(108^\circ) + \sin^2(18^\circ) = \cos^2(18^\circ) + \sin^2(18^\circ) = 1 \] #### b) \( \frac{\sin \left(360^{\circ}-\theta\right) \cos \left(180^{\circ}+\theta\right)}{\sin \left(270^{\circ}\right) \cos \left(360^{\circ}-\theta\right) \sin (90+\theta)} \) Using trigonometric identities: - \( \sin(360^\circ - \theta) = -\sin(\theta) \) - \( \cos(180^\circ + \theta) = -\cos(\theta) \) - \( \sin(270^\circ) = -1 \) - \( \cos(360^\circ - \theta) = \cos(\theta) \) - \( \sin(90^\circ + \theta) = \cos(\theta) \) Substituting these into the expression gives: \[ \frac{-\sin(\theta)(-\cos(\theta))}{-1 \cdot \cos(\theta) \cdot \cos(\theta)} = \frac{\sin(\theta) \cos(\theta)}{\cos^2(\theta)} = \tan(\theta) \] ### 2) Prove the following trigonometric identities: #### a) \( \sin x \tan x+\cos x=\frac{1}{\cos x} \) Starting with the left side: \[ \sin x \tan x + \cos x = \sin x \cdot \frac{\sin x}{\cos x} + \cos x = \frac{\sin^2 x + \cos^2 x}{\cos x} = \frac{1}{\cos x} \] This proves the identity. #### b) \( \frac{\cos x}{1-\sin x}-\frac{\cos x}{1+\sin x}=2 \tan x \) Finding a common denominator: \[ \frac{\cos x(1+\sin x) - \cos x(1-\sin x)}{(1-\sin x)(1+\sin x)} = \frac{\cos x(1+\sin x - 1 + \sin x)}{1 - \sin^2 x} = \frac{2\cos x \sin x}{\cos^2 x} = 2 \tan x \] This proves the identity. ### 3) Determine the value of \( \sin \theta \cos \theta \) if \( \tan \theta=\frac{3}{4} \) From \( \tan \theta = \frac{3}{4} \), we can use the identity: \[ \sin \theta = \frac{3}{\sqrt{3^2 + 4^2}} = \frac{3}{5}, \quad \cos \theta = \frac{4}{\sqrt{3^2 + 4^2}} = \frac{4}{5} \] Thus, \[ \sin \theta \cos \theta = \frac{3}{5} \cdot \frac{4}{5} = \frac{12}{25} \] ### Summary of Results: 1. a) \( 1 \) b) \( \tan(\theta) \) 2. a) Proven b) Proven 3. \( \sin \theta \cos \theta = \frac{12}{25} \)

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Extra Insights

Let’s dive into some fun facts about trigonometry! Did you know that the sine and cosine functions are periodic, meaning they repeat their values over specific intervals? For example, the sine function has a period of \(360^{\circ}\) (or \(2\pi\) radians), meaning \( \sin(360^{\circ} + x) = \sin x \). This property allows us to simplify complex problems by finding equivalent angles! Now, for a little real-world application: trigonometry isn't just for math class! Architects and engineers frequently use trigonometric functions to calculate heights and distances that are difficult to measure. For instance, when determining the height of a building using the angle of elevation from a particular spot, they apply tangent principles, showcasing trigonometry's integral role in designing stable and safe structures. So, next time you see a tall building, remember the angles at play behind the scenes!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad