Responder
1. a) \( 1 \)
b) \( \tan(\theta) \)
2. a) Proven
b) Proven
3. \( \sin \theta \cos \theta = \frac{12}{25} \)
Solución
Solve the equation by following steps:
- step0: Solve for \(\theta\):
\(\tan\left(\theta \right)=\frac{3}{4}\)
- step1: Find the domain:
\(\tan\left(\theta \right)=\frac{3}{4},\theta \neq \frac{\pi }{2}+k\pi ,k \in \mathbb{Z}\)
- step2: Use the inverse trigonometric function:
\(\theta =\arctan\left(\frac{3}{4}\right)\)
- step3: Add the period:
\(\theta =\arctan\left(\frac{3}{4}\right)+k\pi ,k \in \mathbb{Z}\)
- step4: Check if the solution is in the defined range:
\(\theta =\arctan\left(\frac{3}{4}\right)+k\pi ,k \in \mathbb{Z},\theta \neq \frac{\pi }{2}+k\pi ,k \in \mathbb{Z}\)
- step5: Find the intersection:
\(\theta =\arctan\left(\frac{3}{4}\right)+k\pi ,k \in \mathbb{Z}\)
Calculate or simplify the expression \( \sin(108)^2 + \sin(18)^2 \).
Calculate the value by following steps:
- step0: Calculate:
\(\sin\left(108^{2}\right)+\sin\left(18^{2}\right)\)
- step1: Transform the expression:
\(2\sin\left(5994\right)\cos\left(5670\right)\)
- step2: Transform the expression:
\(\sin\left(11664\right)+\sin\left(324\right)\)
Determine whether the expression \( \sin(x) * \tan(x) + \cos(x) = 1/\cos(x) \) is always true.
Verify the identity by following steps:
- step0: Verify:
\(\sin\left(x\right)\tan\left(x\right)+\cos\left(x\right)=\frac{1}{\cos\left(x\right)}\)
- step1: Choose a side to work on:
\(\frac{1}{\cos\left(x\right)}=\frac{1}{\cos\left(x\right)}\)
- step2: Verify the identity:
\(\textrm{true}\)
Solve the equation \( \tan(\theta) = 3/4 \).
Solve the equation by following steps:
- step0: Solve for \(\theta\):
\(\tan\left(\theta \right)=\frac{3}{4}\)
- step1: Find the domain:
\(\tan\left(\theta \right)=\frac{3}{4},\theta \neq \frac{\pi }{2}+k\pi ,k \in \mathbb{Z}\)
- step2: Use the inverse trigonometric function:
\(\theta =\arctan\left(\frac{3}{4}\right)\)
- step3: Add the period:
\(\theta =\arctan\left(\frac{3}{4}\right)+k\pi ,k \in \mathbb{Z}\)
- step4: Check if the solution is in the defined range:
\(\theta =\arctan\left(\frac{3}{4}\right)+k\pi ,k \in \mathbb{Z},\theta \neq \frac{\pi }{2}+k\pi ,k \in \mathbb{Z}\)
- step5: Find the intersection:
\(\theta =\arctan\left(\frac{3}{4}\right)+k\pi ,k \in \mathbb{Z}\)
Determine whether the expression \( (\cos(x)/(1-\sin(x))) - (\cos(x)/(1+\sin(x))) = 2*\tan(x) \) is always true.
Verify the identity by following steps:
- step0: Verify:
\(\left(\frac{\cos\left(x\right)}{\left(1-\sin\left(x\right)\right)}\right)-\left(\frac{\cos\left(x\right)}{\left(1+\sin\left(x\right)\right)}\right)=2\tan\left(x\right)\)
- step1: Choose a side to work on:
\(2\tan\left(x\right)=2\tan\left(x\right)\)
- step2: Verify the identity:
\(\textrm{true}\)
Calculate or simplify the expression \( (\sin(360 - \theta) * \cos(180 + \theta)) / (\sin(270) * \cos(360 - \theta) * \sin(90 + \theta)) \).
Simplify the expression by following steps:
- step0: Solution:
\(\frac{\left(\sin\left(360-\theta \right)\cos\left(180+\theta \right)\right)}{\left(\sin\left(270\right)\cos\left(360-\theta \right)\sin\left(90+\theta \right)\right)}\)
- step1: Remove the parentheses:
\(\frac{\sin\left(360-\theta \right)\cos\left(180+\theta \right)}{\sin\left(270\right)\cos\left(360-\theta \right)\sin\left(90+\theta \right)}\)
- step2: Rewrite the expression:
\(\frac{\sin\left(360-\theta \right)\cos\left(\theta +180\right)}{\sin\left(270\right)\cos\left(360-\theta \right)\sin\left(90+\theta \right)}\)
- step3: Rewrite the expression:
\(\frac{\sin\left(360-\theta \right)\cos\left(\theta +180\right)}{\sin\left(270\right)\cos\left(360-\theta \right)\sin\left(\theta +90\right)}\)
- step4: Transform the expression:
\(\frac{\cos\left(\theta +180\right)\tan\left(360-\theta \right)}{\sin\left(270\right)\sin\left(\theta +90\right)}\)
- step5: Transform the expression:
\(\cos\left(\theta +180\right)\tan\left(360-\theta \right)\csc\left(270\right)\csc\left(\theta +90\right)\)
- step6: Rewrite the expression:
\(\csc\left(270\right)\cos\left(\theta +180\right)\tan\left(360-\theta \right)\csc\left(\theta +90\right)\)
Let's go through each part of your problem step by step.
### 1) Simplify the following expressions:
#### a) \( \sin ^{2} 108^{\circ}+\sin ^{2} 18^{\circ} \)
Using the identity \( \sin(90^\circ + x) = \cos(x) \), we can rewrite \( \sin(108^\circ) \) as:
\[
\sin(108^\circ) = \sin(90^\circ + 18^\circ) = \cos(18^\circ)
\]
Thus, we have:
\[
\sin^2(108^\circ) = \cos^2(18^\circ)
\]
Now, using the Pythagorean identity \( \sin^2(x) + \cos^2(x) = 1 \):
\[
\sin^2(108^\circ) + \sin^2(18^\circ) = \cos^2(18^\circ) + \sin^2(18^\circ) = 1
\]
#### b) \( \frac{\sin \left(360^{\circ}-\theta\right) \cos \left(180^{\circ}+\theta\right)}{\sin \left(270^{\circ}\right) \cos \left(360^{\circ}-\theta\right) \sin (90+\theta)} \)
Using trigonometric identities:
- \( \sin(360^\circ - \theta) = -\sin(\theta) \)
- \( \cos(180^\circ + \theta) = -\cos(\theta) \)
- \( \sin(270^\circ) = -1 \)
- \( \cos(360^\circ - \theta) = \cos(\theta) \)
- \( \sin(90^\circ + \theta) = \cos(\theta) \)
Substituting these into the expression gives:
\[
\frac{-\sin(\theta)(-\cos(\theta))}{-1 \cdot \cos(\theta) \cdot \cos(\theta)} = \frac{\sin(\theta) \cos(\theta)}{\cos^2(\theta)} = \tan(\theta)
\]
### 2) Prove the following trigonometric identities:
#### a) \( \sin x \tan x+\cos x=\frac{1}{\cos x} \)
Starting with the left side:
\[
\sin x \tan x + \cos x = \sin x \cdot \frac{\sin x}{\cos x} + \cos x = \frac{\sin^2 x + \cos^2 x}{\cos x} = \frac{1}{\cos x}
\]
This proves the identity.
#### b) \( \frac{\cos x}{1-\sin x}-\frac{\cos x}{1+\sin x}=2 \tan x \)
Finding a common denominator:
\[
\frac{\cos x(1+\sin x) - \cos x(1-\sin x)}{(1-\sin x)(1+\sin x)} = \frac{\cos x(1+\sin x - 1 + \sin x)}{1 - \sin^2 x} = \frac{2\cos x \sin x}{\cos^2 x} = 2 \tan x
\]
This proves the identity.
### 3) Determine the value of \( \sin \theta \cos \theta \) if \( \tan \theta=\frac{3}{4} \)
From \( \tan \theta = \frac{3}{4} \), we can use the identity:
\[
\sin \theta = \frac{3}{\sqrt{3^2 + 4^2}} = \frac{3}{5}, \quad \cos \theta = \frac{4}{\sqrt{3^2 + 4^2}} = \frac{4}{5}
\]
Thus,
\[
\sin \theta \cos \theta = \frac{3}{5} \cdot \frac{4}{5} = \frac{12}{25}
\]
### Summary of Results:
1. a) \( 1 \)
b) \( \tan(\theta) \)
2. a) Proven
b) Proven
3. \( \sin \theta \cos \theta = \frac{12}{25} \)
Respondido por UpStudy AI y revisado por un tutor profesional

Explicar

Simplifique esta solución