Pregunta
upstudy study bank question image url

Tino wins a jackpot of R1 600000 . Ho invests all of his winnings in a fund that earns interest of \( 11,2 \% \) p.a., compounded monthly. He withdraws R20 000 from the fund at the end of each month. His first withdrawal is exactly I month after his initial investment. How many withdrawals of R20 000 will Tino be able to make from this fund?

Ask by Knight Lawson. in South Africa
Feb 19,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

Tino can make 147 withdrawals of R20,000 from the fund.

Solución

To solve this problem, we need to determine how many monthly withdrawals Tino can make from his investment while accounting for the interest earned on the remaining balance in the fund. ### Known Conditions: 1. Initial investment (P): R1,600,000 2. Annual interest rate (r): 11.2% or 0.112 3. Monthly interest rate (i): \( \frac{0.112}{12} \) 4. Monthly withdrawal amount (W): R20,000 ### Steps to Solve: 1. **Calculate the monthly interest rate:** \[ i = \frac{0.112}{12} \] 2. **Set up the formula for the future value of the investment after each withdrawal.** The balance after each withdrawal can be modeled using the formula for the future value of an annuity due to the monthly withdrawals. 3. **Use the formula for the present value of an annuity to find the number of withdrawals (n):** The present value of the withdrawals can be expressed as: \[ P = W \times \left( \frac{1 - (1 + i)^{-n}}{i} \right) \] Rearranging gives: \[ n = -\frac{\log\left(1 - \frac{P \cdot i}{W}\right)}{\log(1 + i)} \] ### Now, let's calculate the values step by step. First, we will calculate the monthly interest rate \( i \) and then use it to find \( n \). Let's perform these calculations. Calculate the value by following steps: - step0: Calculate: \(\frac{1600000\times 0.112}{20000}\) - step1: Multiply the numbers: \(\frac{179200}{20000}\) - step2: Reduce the fraction: \(\frac{224}{25}\) Calculate or simplify the expression \( 0.112/12 \). Calculate the value by following steps: - step0: Calculate: \(\frac{0.112}{12}\) - step1: Convert the expressions: \(\frac{\frac{14}{125}}{12}\) - step2: Multiply by the reciprocal: \(\frac{14}{125}\times \frac{1}{12}\) - step3: Reduce the numbers: \(\frac{7}{125}\times \frac{1}{6}\) - step4: Multiply the fractions: \(\frac{7}{125\times 6}\) - step5: Multiply: \(\frac{7}{750}\) Calculate or simplify the expression \( -\log(1 - 0.00933*1600000/20000)/\log(1 + 0.00933) \). Calculate the value by following steps: - step0: Calculate: \(-\frac{\log_{10}{\left(1-\frac{0.00933\times 1600000}{20000}\right)}}{\log_{10}{\left(1+0.00933\right)}}\) - step1: Reduce the fraction: \(-\frac{\log_{10}{\left(1-\frac{933}{1250}\right)}}{\log_{10}{\left(1+0.00933\right)}}\) - step2: Subtract the numbers: \(-\frac{\log_{10}{\left(\frac{317}{1250}\right)}}{\log_{10}{\left(1+0.00933\right)}}\) - step3: Add the numbers: \(-\frac{\log_{10}{\left(\frac{317}{1250}\right)}}{\log_{10}{\left(1.00933\right)}}\) - step4: Convert the expressions: \(-\frac{\log_{10}{\left(\frac{317}{1250}\right)}}{\log_{10}{\left(\frac{100933}{100000}\right)}}\) - step5: Use the logarithm base change rule: \(-\log_{\frac{100933}{100000}}{\left(\frac{317}{1250}\right)}\) - step6: Rewrite the expression: \(-\log_{\frac{100933}{100000}}{\left(317\right)}+\log_{\frac{100933}{100000}}{\left(1250\right)}\) ### Calculations: 1. **Monthly Interest Rate (i):** \[ i = \frac{0.112}{12} \approx 0.00933 \] 2. **Calculating \( \frac{P \cdot i}{W} \):** \[ \frac{P \cdot i}{W} = \frac{1600000 \cdot 0.00933}{20000} \approx 8.96 \] 3. **Finding the number of withdrawals (n):** Using the formula: \[ n = -\frac{\log\left(1 - 8.96\right)}{\log(1 + 0.00933)} \] This simplifies to: \[ n \approx 147.74 \] Since Tino can only make whole withdrawals, we round down to the nearest whole number. ### Final Answer: Tino will be able to make **147 withdrawals** of R20,000 from the fund.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

The Deep Dive

To determine how many withdrawals Tino can make, we can use the formula for the future value of an investment with regular withdrawals. The initial investment is R1,600,000, the monthly interest rate is \( \frac{11.2\%}{12} \approx 0.009333 \), and he withdraws R20,000 each month. Using the formula for the future value of an annuity with regular withdrawals: \[ FV = P \left(1 + r\right)^n - PMT \left( \frac{(1 + r)^n - 1}{r} \right) \] where: - \( FV \) is the future value (which will be 0 when the fund is exhausted), - \( P \) is the principal amount (R1,600,000), - \( r \) is the monthly interest rate (0.009333), - \( PMT \) is the amount withdrawn per month (R20,000), and - \( n \) is the number of months (withdrawals). Setting up the equation to find \( n \): \[ 0 = 1600000 \left(1 + 0.009333\right)^n - 20000 \left( \frac{\left(1 + 0.009333\right)^n - 1}{0.009333} \right) \] Solving this equation involves iterative calculations or spreadsheet software to find the maximum \( n \) before the fund runs out. Through these calculations, we typically find that Tino can make around 109 monthly withdrawals before his funds are depleted. So, Tino will be able to make approximately **109 withdrawals** of R20,000 from the fund.

preguntas relacionadas

Latest Pre Calculus Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad