Pregunta
upstudy study bank question image url

3. Prove that \( \left[\begin{array}{ll}3 & -1 \\ 5 & -2\end{array}\right] \) and \( \left[\begin{array}{cc}2 & -1 \\ 5 & -3\end{array}\right] \) are the inverses of each oth

Ask by Santiago Long. in Nepal
Nov 11,2024

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The product of the two matrices is the identity matrix, proving they are inverses of each other.

Solución

To prove that two matrices are inverses of each other, we need to show that their product is the identity matrix. Given matrices: \( A = \left[\begin{array}{ll}3 & -1 \\ 5 & -2\end{array}\right] \) \( B = \left[\begin{array}{cc}2 & -1 \\ 5 & -3\end{array}\right] \) We need to find the product of matrices A and B and check if it is equal to the identity matrix. Let's calculate the product of matrices A and B: \( AB = \left[\begin{array}{ll}3 & -1 \\ 5 & -2\end{array}\right] \times \left[\begin{array}{cc}2 & -1 \\ 5 & -3\end{array}\right] \) \( AB = \left[\begin{array}{ll}(3*2 + (-1)*5) & (3*(-1) + (-1)*(-3)) \\ (5*2 + (-2)*5) & (5*(-1) + (-2)*(-3))\end{array}\right] \) \( AB = \left[\begin{array}{ll}(6 - 5) & (-3 + 3) \\ (10 - 10) & (-5 + 6)\end{array}\right] \) \( AB = \left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right] \) Since the product of matrices A and B is the identity matrix, we have proven that \( \left[\begin{array}{ll}3 & -1 \\ 5 & -2\end{array}\right] \) and \( \left[\begin{array}{cc}2 & -1 \\ 5 & -3\end{array}\right] \) are inverses of each other.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To prove that the given matrices are inverses of each other, we need to multiply them and check if the result is the identity matrix. Let's denote the first matrix as \( A = \left[\begin{array}{ll}3 & -1 \\ 5 & -2\end{array}\right] \) and the second matrix as \( B = \left[\begin{array}{cc}2 & -1 \\ 5 & -3\end{array}\right] \). Now we calculate the product \( AB \): \[ AB = \left[\begin{array}{ll}3 & -1 \\ 5 & -2\end{array}\right] \left[\begin{array}{cc}2 & -1 \\ 5 & -3\end{array}\right] \] Calculating the elements of the product: 1. First row, first column: \[ (3 \cdot 2) + (-1 \cdot 5) = 6 - 5 = 1 \] 2. First row, second column: \[ (3 \cdot -1) + (-1 \cdot -3) = -3 + 3 = 0 \] 3. Second row, first column: \[ (5 \cdot 2) + (-2 \cdot 5) = 10 - 10 = 0 \] 4. Second row, second column: \[ (5 \cdot -1) + (-2 \cdot -3) = -5 + 6 = 1 \] Putting it all together, we have: \[ AB = \left[\begin{array}{cc}1 & 0 \\ 0 & 1\end{array}\right] \] Since the product \( AB \) is the identity matrix, we conclude that \( A \) and \( B \) are indeed inverses of each other.

preguntas relacionadas

Latest Algebra Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad