Pregunta
upstudy study bank question image url

Find all values of \( x \) where the function is discontinuous. \( k(x)=e^{\sqrt{x-7}} \)

Ask by Simpson Stuart. in the United States
Feb 21,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The function \( k(x) = e^{\sqrt{x-7}} \) is discontinuous for all \( x < 7 \).

Solución

To find the values of \( x \) where the function \( k(x) = e^{\sqrt{x-7}} \) is discontinuous, we need to analyze the expression inside the function. 1. **Identify the domain of the function:** The function \( k(x) \) involves a square root, \( \sqrt{x-7} \). The square root function is defined only for non-negative values. Therefore, we need to ensure that the expression inside the square root is non-negative: \[ x - 7 \geq 0 \] This simplifies to: \[ x \geq 7 \] 2. **Determine the points of discontinuity:** The function \( k(x) \) is composed of the exponential function and the square root function. The exponential function \( e^y \) is continuous for all real numbers \( y \). However, the square root function \( \sqrt{x-7} \) is only defined for \( x \geq 7 \). Therefore, the function \( k(x) \) is discontinuous for values of \( x < 7 \) because the square root is not defined in that range. 3. **Conclusion:** The function \( k(x) \) is discontinuous for all values of \( x < 7 \). Thus, the values of \( x \) where the function is discontinuous are: \[ (-\infty, 7) \]

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Beyond the Answer

The function \( k(x)=e^{\sqrt{x-7}} \) is discontinuous where the expression inside the square root is non-positive. Since the square root function is only defined for non-negative values, we have the restriction: \[ \sqrt{x-7} \text{ is defined for } x-7 \geq 0 \Rightarrow x \geq 7. \] Thus, the function is continuous for \( x \geq 7 \) and undefined for \( x < 7 \). Therefore, the function is discontinuous at all values \( x < 7 \). In summary, the function \( k(x) \) is discontinuous for \( x < 7 \), and specifically, it is important to note that at \( x = 7 \) it actually becomes continuous. In conclusion, the values of \( x \) where the function \( k(x) \) is discontinuous are: \[ (-\infty, 7). \]

preguntas relacionadas

Latest Pre Calculus Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad