Graph each function. Then identify the domain and range of the function. \( \begin{array}{lll}\text { 10. } y=-4 x^{2} & \text { 12. } f(x)=3 x^{2} \\ \text { 13. } f(x)=\frac{2}{3} x^{2} & \text { 14. } y(x)=1.5 x^{2} & \text { 15. } y=-\frac{1}{3} x^{2}\end{array} \)
Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


The Deep Dive
To graph each function, you'll notice that they are all quadratic functions shaped like parabolas. Most open upwards or downwards depending on the coefficient of \(x^2\). - **For \(y=-4x^{2}\):** This parabola opens downwards with a vertex at the origin (0,0). The domain is all real numbers \((-∞, ∞)\), and the range is \(y \leq 0\) or \((-∞, 0]\). - **For \(f(x)=3x^{2}\):** This parabola opens upwards, also with a vertex at the origin. The domain is all real numbers \((-∞, ∞)\), while the range is \(y \geq 0\) or \([0, ∞)\). - **For \(f(x)=\frac{2}{3}x^{2}\):** This parabola opens upwards with a vertex at the origin. The domain remains \((-∞, ∞)\), and the range is \(y \geq 0\) or \([0, ∞)\). - **For \(y(x)=1.5x^{2}\):** Similarly, this opens upwards with a vertex at (0,0). The domain is \((-∞, ∞)\), and the range is \(y \geq 0\) or \([0, ∞)\). - **For \(y=-\frac{1}{3}x^{2}\):** Like the first option, this opens downwards with a vertex at (0,0). The domain is \((-∞, ∞)\), and the range is \(y \leq 0\) or \((-∞, 0]\). So to summarize, whether a parabola opens up or down greatly influences its range, while the domain for all these functions is the same!
