Pregunta
upstudy study bank question image url

Graph each function. Then identify the domain and range of the function. \( \begin{array}{lll}\text { 10. } y=-4 x^{2} & \text { 12. } f(x)=3 x^{2} \\ \text { 13. } f(x)=\frac{2}{3} x^{2} & \text { 14. } y(x)=1.5 x^{2} & \text { 15. } y=-\frac{1}{3} x^{2}\end{array} \)

Ask by Lewis Reyes. in the United States
Dec 03,2024

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

| Function | Domain | Range | |-------------------------|-------------------|-----------------| | \( y = -4x^2 \) | \( (-\infty, \infty) \) | \( (-\infty, 0] \) | | \( f(x) = 3x^2 \) | \( (-\infty, \infty) \) | \( [0, \infty) \) | | \( f(x) = \frac{2}{3}x^2 \) | \( (-\infty, \infty) \) | \( [0, \infty) \) | | \( y(x) = 1.5x^2 \) | \( (-\infty, \infty) \) | \( [0, \infty) \) | | \( y = -\frac{1}{3}x^2 \) | \( (-\infty, \infty) \) | \( (-\infty, 0] \) |

Solución

Let's analyze each function one by one, graph them, and identify their domains and ranges. ### 10. \( y = -4x^2 \) **Graph:** This is a downward-opening parabola with its vertex at the origin (0, 0). **Domain:** The domain of any quadratic function is all real numbers, so: \[ \text{Domain: } (-\infty, \infty) \] **Range:** Since the parabola opens downwards, the maximum value is at the vertex (0, 0), and it goes downwards indefinitely: \[ \text{Range: } (-\infty, 0] \] --- ### 12. \( f(x) = 3x^2 \) **Graph:** This is an upward-opening parabola with its vertex at the origin (0, 0). **Domain:** The domain is all real numbers: \[ \text{Domain: } (-\infty, \infty) \] **Range:** Since the parabola opens upwards, the minimum value is at the vertex (0, 0), and it goes upwards indefinitely: \[ \text{Range: } [0, \infty) \] --- ### 13. \( f(x) = \frac{2}{3}x^2 \) **Graph:** This is also an upward-opening parabola with its vertex at the origin (0, 0), but it is wider than the previous one. **Domain:** The domain is all real numbers: \[ \text{Domain: } (-\infty, \infty) \] **Range:** The minimum value is at the vertex (0, 0), and it goes upwards indefinitely: \[ \text{Range: } [0, \infty) \] --- ### 14. \( y(x) = 1.5x^2 \) **Graph:** This is another upward-opening parabola with its vertex at the origin (0, 0). **Domain:** The domain is all real numbers: \[ \text{Domain: } (-\infty, \infty) \] **Range:** The minimum value is at the vertex (0, 0), and it goes upwards indefinitely: \[ \text{Range: } [0, \infty) \] --- ### 15. \( y = -\frac{1}{3}x^2 \) **Graph:** This is a downward-opening parabola with its vertex at the origin (0, 0), but it is wider than the first function. **Domain:** The domain is all real numbers: \[ \text{Domain: } (-\infty, \infty) \] **Range:** Since the parabola opens downwards, the maximum value is at the vertex (0, 0), and it goes downwards indefinitely: \[ \text{Range: } (-\infty, 0] \] --- ### Summary of Domains and Ranges | Function | Domain | Range | |-------------------------|-------------------|-----------------| | \( y = -4x^2 \) | \( (-\infty, \infty) \) | \( (-\infty, 0] \) | | \( f(x) = 3x^2 \) | \( (-\infty, \infty) \) | \( [0, \infty) \) | | \( f(x) = \frac{2}{3}x^2 \) | \( (-\infty, \infty) \) | \( [0, \infty) \) | | \( y(x) = 1.5x^2 \) | \( (-\infty, \infty) \) | \( [0, \infty) \) | | \( y = -\frac{1}{3}x^2 \) | \( (-\infty, \infty) \) | \( (-\infty, 0] \) | These functions are all parabolas, and their domains are all real numbers, while their ranges depend on whether they open upwards or downwards.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

The Deep Dive

To graph each function, you'll notice that they are all quadratic functions shaped like parabolas. Most open upwards or downwards depending on the coefficient of \(x^2\). - **For \(y=-4x^{2}\):** This parabola opens downwards with a vertex at the origin (0,0). The domain is all real numbers \((-∞, ∞)\), and the range is \(y \leq 0\) or \((-∞, 0]\). - **For \(f(x)=3x^{2}\):** This parabola opens upwards, also with a vertex at the origin. The domain is all real numbers \((-∞, ∞)\), while the range is \(y \geq 0\) or \([0, ∞)\). - **For \(f(x)=\frac{2}{3}x^{2}\):** This parabola opens upwards with a vertex at the origin. The domain remains \((-∞, ∞)\), and the range is \(y \geq 0\) or \([0, ∞)\). - **For \(y(x)=1.5x^{2}\):** Similarly, this opens upwards with a vertex at (0,0). The domain is \((-∞, ∞)\), and the range is \(y \geq 0\) or \([0, ∞)\). - **For \(y=-\frac{1}{3}x^{2}\):** Like the first option, this opens downwards with a vertex at (0,0). The domain is \((-∞, ∞)\), and the range is \(y \leq 0\) or \((-∞, 0]\). So to summarize, whether a parabola opens up or down greatly influences its range, while the domain for all these functions is the same!

preguntas relacionadas

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad