13. \( f(x)=x^{2}-16 \) 14. \( f(x)=5 x^{2}+5 x-30 \) Using the GRAPHING CALCULATOR Step 1: \[ \text { Hit } \quad Y= \] 15. \( f(x)=-x^{2}-2 x+24 \) 16. \( f(x)=x^{2}+7 x-8 \) 17. \( f(x)=x^{2}-3 x-28 \) 18. \( f(x)=-x^{2}+7 x-10 \) to enter the function. Step 2: Hit GRAPH 19. \( f(x)=x^{3}-5 x^{2}+2 x+8 \) 20. \( f(x)=x^{3}+2 x^{2}-15 x \) to view the graph. 21. \( f(x)=3 x^{3}-3 x \) 22. \( f(x)=x^{4}+2 x^{3}-25 x^{2}-50 x \)
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Beyond the Answer
Graphing quadratic and polynomial functions can be a thrilling adventure! Each equation reveals unique features like intercepts, turning points, and asymptotes. With your graphing calculator, you're not just solving equations; you’re visualizing mathematical relationships, which makes understanding concepts like vertex and y-intercept more tangible. So, buckle up for a colorful ride! Don’t forget the power of zooming in and out! It can make a significant difference in how the graph appears on your screen. If you miss a point, like a vertex or root, adjusting the window settings can help reveal hidden gems of information. Additionally, check your function inputs carefully. Small errors in entering coefficients can lead to graphical mishaps—trust me, a misplaced negative sign can change everything!
