Pregunta
upstudy study bank question image url

Describe the error in the problem \( x^{3}-25 x=0 \) \( x^{3}=25 x \) \( x^{2}=25 \) \( x= \pm 5 \)

Ask by Mccoy Bowers. in the United States
Feb 21,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The error is in the step where \( x^{3} = 25x \) is incorrectly simplified to \( x^{2} = 25 \). The correct approach is to factor out \( x \), resulting in \( x(x^{2} - 25) = 0 \), which gives solutions \( x = 0 \), \( x = 5 \), and \( x = -5 \).

Solución

Let's analyze the steps provided in the problem to identify any errors. 1. The original equation is: \[ x^{3} - 25x = 0 \] This is correct. 2. The next step is: \[ x^{3} = 25x \] This is also correct, as it is simply rearranging the original equation. 3. The next step is: \[ x^{2} = 25 \] This step is where the error occurs. To go from \( x^{3} = 25x \) to \( x^{2} = 25 \), we need to factor out \( x \) from the left side of the equation. The correct factorization should be: \[ x(x^{2} - 25) = 0 \] This gives us two cases to consider: - \( x = 0 \) - \( x^{2} - 25 = 0 \) 4. Solving \( x^{2} - 25 = 0 \) gives: \[ x^{2} = 25 \implies x = \pm 5 \] Thus, the complete solution set for the equation \( x^{3} - 25x = 0 \) is: \[ x = 0, \quad x = 5, \quad x = -5 \] In summary, the error in the problem is the omission of the \( x = 0 \) solution and the incorrect transition from \( x^{3} = 25x \) to \( x^{2} = 25 \) without factoring. The correct approach should include factoring and considering all possible solutions.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Extra Insights

The error in the problem occurs in the step where \( x^{3} = 25x \) is transformed to \( x^{2} = 25 \). In fact, the correct manipulation involves factoring \( x \) out from the original equation: \( x^3 - 25x = 0 \), which becomes \( x(x^2 - 25) = 0 \). Thus, one must recognize that \( x = 0 \) is also a solution in addition to \( x = \pm 5 \). To solve the equation correctly, we start with \( x(x^2 - 25) = 0 \). This indicates three possible solutions: \( x = 0 \), \( x - 5 = 0 \) (which gives \( x = 5 \)), and \( x + 5 = 0 \) (which gives \( x = -5 \)). Hence, the complete solution set includes \( x = 0, 5, -5 \).

preguntas relacionadas

Latest Algebra Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad