Solve the following inequality and graph the solution: \[ (x+3)(x-4)<0 \] Write the solution in interval notation
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Extra Insights
To solve the inequality \((x+3)(x-4)<0\), we first identify the critical points by setting the expression equal to zero: 1. \(x + 3 = 0\) gives \(x = -3\) 2. \(x - 4 = 0\) gives \(x = 4\) These critical points split the number line into three intervals: \((-∞, -3)\), \((-3, 4)\), and \((4, ∞)\). Next, we test a point from each interval: - For \((-∞, -3)\), let's test \(x = -4\): \(((-4)+3)((-4)-4) = (-1)(-8) = 8 > 0\) (not part of the solution) - For \((-3, 4)\), let's test \(x = 0\): \((0+3)(0-4) = (3)(-4) = -12 < 0\) (this interval works) - For \((4, ∞)\), let's test \(x = 5\): \((5+3)(5-4) = (8)(1) = 8 > 0\) (not part of the solution) Thus, the solution to the inequality is the interval where the product is negative: \((-3, 4)\). In interval notation, the solution is \((-3, 4)\). To graph the solution, you'd draw a number line, marking -3 and 4 with open circles (to denote that these points are not included), and shade the region between them.


Puedes disfrutar
Empieza ahora- Explicaciones paso a paso
- Tutores expertos en vivo 24/7
- Número ilimitado de preguntas
- Sin interrupciones
- Acceso completo a Respuesta y Solución
- Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Totalmente gratis pero limitado
- Solución limitada


