Pregunta
upstudy study bank question image url

Graph the parabola and the axis of symmetry. Use a the axis of symmetry. Use the graph to write the dor \( f(x)=-2 x^{2}+5 \) Part: \( 0 / 5 \)

Ask by Mathis Cross. in the United States
Jan 15,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The axis of symmetry for the parabola \( f(x) = -2x^{2} + 5 \) is \( x = 0 \).

Solución

To graph the parabola \( f(x) = -2x^{2} + 5 \) and identify its **axis of symmetry**, follow these steps: ### 1. **Understanding the Parabola** The given quadratic function is in the form: \[ f(x) = ax^{2} + bx + c \] where: - \( a = -2 \) - \( b = 0 \) (since there's no \( x \) term) - \( c = 5 \) Since \( a = -2 \) is negative, the parabola opens **downwards**. ### 2. **Finding the Vertex** The vertex of a parabola \( f(x) = ax^{2} + bx + c \) is given by: \[ \text{Vertex } (h, k) \] where: \[ h = -\frac{b}{2a} \] \[ k = f(h) \] For our function: \[ h = -\frac{0}{2(-2)} = 0 \] \[ k = f(0) = -2(0)^2 + 5 = 5 \] **Vertex:** \( (0, 5) \) ### 3. **Determining the Axis of Symmetry** The **axis of symmetry** of a parabola is a vertical line that passes through the vertex. Its equation is: \[ x = h \] For our vertex \( (0, 5) \): \[ \text{Axis of Symmetry: } x = 0 \] ### 4. **Plotting the Parabola** 1. **Vertex:** Plot the vertex at \( (0, 5) \). 2. **Axis of Symmetry:** Draw a dashed vertical line through the vertex along \( x = 0 \). 3. **Additional Points:** - Choose values for \( x \) on either side of the axis of symmetry to find corresponding \( y \)-values. For example: | \( x \) | \( f(x) = -2x^{2} + 5 \) | |-------|--------------------------| | -2 | \( -2(-2)^2 + 5 = -8 + 5 = -3 \) | | -1 | \( -2(-1)^2 + 5 = -2 + 5 = 3 \) | | 0 | \( 5 \) (vertex) | | 1 | \( -2(1)^2 + 5 = -2 + 5 = 3 \) | | 2 | \( -2(2)^2 + 5 = -8 + 5 = -3 \) | 4. **Symmetry:** Plot these points on both sides of the axis of symmetry to maintain symmetry. 5. **Shape:** Connect the points with a smooth, U-shaped curve opening downwards. ### 5. **Graph Illustration** While I can't provide a visual graph here, here's a description of how it would look: - **Vertex:** Highest point at (0, 5). - **Axis of Symmetry:** A vertical dashed line along \( x = 0 \). - **Points:** - Left of the vertex: (-2, -3) and (-1, 3). - Right of the vertex: (1, 3) and (2, -3). - **Parabola Shape:** Downward-facing "U" passing through these points. ### 6. **Summary** - **Axis of Symmetry:** \( x = 0 \) - **Vertex:** \( (0, 5) \) - **Direction:** Opens downward. ### 7. **Final Answer** After graphing \( f(x) = -2x^{2} + 5 \), the **axis of symmetry** is the vertical line: \[ \boxed{x = 0} \]

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To graph the parabola represented by the equation \( f(x) = -2x^2 + 5 \), start by identifying its vertex. The vertex form of a parabola \( f(x) = a(x-h)^2 + k \) reveals that the vertex is at \( (0, 5) \) since there are no horizontal shifts or linear terms. The axis of symmetry for this parabola is the vertical line \( x = 0 \). Now, for the domain, since a parabola opens downward (as indicated by the negative coefficient of \( x^2 \)), the function takes all real numbers for \( x \) and reaches a maximum value of 5 at the vertex. Therefore, the domain is \( (-\infty, \infty) \), and the range is \( (-\infty, 5] \).

preguntas relacionadas

Latest Algebra Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad