Responder
To approximate \( 3^{\sqrt{3}} \), create a table with \( x \)-values close to \( \sqrt{3} \approx 1.732 \) and calculate \( f(x) = 3^x \) for each. Using values like 1.7, 1.71, 1.72, 1.73, and 1.74, the calculations yield:
| \( x \) | \( f(x) = 3^x \) |
|-----------|---------------------|
| 1.7 | 6.473 |
| 1.71 | 6.545 |
| 1.72 | 6.617 |
| 1.73 | 6.690 |
| 1.74 | 6.764 |
Averaging \( f(1.72) \) and \( f(1.73) \) gives \( 6.6535 \), which rounds to \( 6.654 \). Therefore, \( 3^{\sqrt{3}} \approx 6.654 \).
Solución
To approximate \( 3^{\sqrt{3}} \) using the function \( f(x) = 3^x \), we will create a table with \( x \)-values that are progressively closer to \( \sqrt{3} \).
First, we need to find the approximate value of \( \sqrt{3} \):
\[
\sqrt{3} \approx 1.732
\]
Next, we will choose \( x \)-values around \( 1.732 \) and calculate \( f(x) = 3^x \) for those values. We can start with values like \( 1.7 \), \( 1.71 \), \( 1.72 \), \( 1.73 \), and \( 1.74 \).
Let's calculate \( f(x) \) for these \( x \)-values:
1. \( x = 1.7 \)
2. \( x = 1.71 \)
3. \( x = 1.72 \)
4. \( x = 1.73 \)
5. \( x = 1.74 \)
Now, I will calculate \( f(x) \) for these values.
Calculate the value by following steps:
- step0: Calculate:
\(3^{1.72}\)
- step1: Convert the expressions:
\(3^{\frac{43}{25}}\)
- step2: Transform the expression:
\(\sqrt[25]{3^{43}}\)
- step3: Rewrite the expression:
\(\sqrt[25]{3^{25}\times 3^{18}}\)
- step4: Rewrite the expression:
\(\sqrt[25]{3^{25}}\times \sqrt[25]{3^{18}}\)
- step5: Rewrite the expression:
\(3\sqrt[25]{3^{18}}\)
Calculate or simplify the expression \( 3^(1.74) \).
Calculate the value by following steps:
- step0: Calculate:
\(3^{1.74}\)
- step1: Convert the expressions:
\(3^{\frac{87}{50}}\)
- step2: Transform the expression:
\(\sqrt[50]{3^{87}}\)
- step3: Rewrite the expression:
\(\sqrt[50]{3^{50}\times 3^{37}}\)
- step4: Rewrite the expression:
\(\sqrt[50]{3^{50}}\times \sqrt[50]{3^{37}}\)
- step5: Rewrite the expression:
\(3\sqrt[50]{3^{37}}\)
Calculate or simplify the expression \( 3^(1.71) \).
Calculate the value by following steps:
- step0: Calculate:
\(3^{1.71}\)
- step1: Convert the expressions:
\(3^{\frac{171}{100}}\)
- step2: Transform the expression:
\(\sqrt[100]{3^{171}}\)
- step3: Rewrite the expression:
\(\sqrt[100]{3^{100}\times 3^{71}}\)
- step4: Rewrite the expression:
\(\sqrt[100]{3^{100}}\times \sqrt[100]{3^{71}}\)
- step5: Rewrite the expression:
\(3\sqrt[100]{3^{71}}\)
Calculate or simplify the expression \( 3^(1.73) \).
Calculate the value by following steps:
- step0: Calculate:
\(3^{1.73}\)
- step1: Convert the expressions:
\(3^{\frac{173}{100}}\)
- step2: Transform the expression:
\(\sqrt[100]{3^{173}}\)
- step3: Rewrite the expression:
\(\sqrt[100]{3^{100}\times 3^{73}}\)
- step4: Rewrite the expression:
\(\sqrt[100]{3^{100}}\times \sqrt[100]{3^{73}}\)
- step5: Rewrite the expression:
\(3\sqrt[100]{3^{73}}\)
Calculate or simplify the expression \( 3^(1.7) \).
Calculate the value by following steps:
- step0: Calculate:
\(3^{1.7}\)
- step1: Convert the expressions:
\(3^{\frac{17}{10}}\)
- step2: Transform the expression:
\(\sqrt[10]{3^{17}}\)
- step3: Rewrite the expression:
\(\sqrt[10]{3^{10}\times 3^{7}}\)
- step4: Rewrite the expression:
\(\sqrt[10]{3^{10}}\times \sqrt[10]{3^{7}}\)
- step5: Rewrite the expression:
\(3\sqrt[10]{3^{7}}\)
- step6: Calculate:
\(3\sqrt[10]{2187}\)
Here are the calculated values of \( f(x) = 3^x \) for the chosen \( x \)-values:
| \( x \) | \( f(x) = 3^x \) |
|-----------|---------------------|
| 1.7 | 6.473 |
| 1.71 | 6.545 |
| 1.72 | 6.617 |
| 1.73 | 6.690 |
| 1.74 | 6.764 |
Now, we can observe the values of \( f(x) \) as \( x \) approaches \( \sqrt{3} \approx 1.732 \).
To find a more precise approximation of \( 3^{\sqrt{3}} \), we can take the average of the values at \( x = 1.72 \) and \( x = 1.73 \):
\[
\text{Average} = \frac{6.617 + 6.690}{2} \approx 6.6535
\]
Thus, the approximation of \( 3^{\sqrt{3}} \) correct to three decimal places is:
\[
\boxed{6.654}
\]
Respondido por UpStudy AI y revisado por un tutor profesional

Explicar

Simplifique esta solución