Pregunta
upstudy study bank question image url

Use the function \( f(x)=3^{x} \) to find the approximation \( 3^{\sqrt{3}} \), correct to three decimal places, by creating a table with \( x \)-values closer and closer to \( \sqrt{3} \) and the corresponding \( f(x) \) values. (4 points)

Ask by Hanson Ramos. in the United States
Feb 21,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

To approximate \( 3^{\sqrt{3}} \), create a table with \( x \)-values close to \( \sqrt{3} \approx 1.732 \) and calculate \( f(x) = 3^x \) for each. Using values like 1.7, 1.71, 1.72, 1.73, and 1.74, the calculations yield: | \( x \) | \( f(x) = 3^x \) | |-----------|---------------------| | 1.7 | 6.473 | | 1.71 | 6.545 | | 1.72 | 6.617 | | 1.73 | 6.690 | | 1.74 | 6.764 | Averaging \( f(1.72) \) and \( f(1.73) \) gives \( 6.6535 \), which rounds to \( 6.654 \). Therefore, \( 3^{\sqrt{3}} \approx 6.654 \).

Solución

To approximate \( 3^{\sqrt{3}} \) using the function \( f(x) = 3^x \), we will create a table with \( x \)-values that are progressively closer to \( \sqrt{3} \). First, we need to find the approximate value of \( \sqrt{3} \): \[ \sqrt{3} \approx 1.732 \] Next, we will choose \( x \)-values around \( 1.732 \) and calculate \( f(x) = 3^x \) for those values. We can start with values like \( 1.7 \), \( 1.71 \), \( 1.72 \), \( 1.73 \), and \( 1.74 \). Let's calculate \( f(x) \) for these \( x \)-values: 1. \( x = 1.7 \) 2. \( x = 1.71 \) 3. \( x = 1.72 \) 4. \( x = 1.73 \) 5. \( x = 1.74 \) Now, I will calculate \( f(x) \) for these values. Calculate the value by following steps: - step0: Calculate: \(3^{1.72}\) - step1: Convert the expressions: \(3^{\frac{43}{25}}\) - step2: Transform the expression: \(\sqrt[25]{3^{43}}\) - step3: Rewrite the expression: \(\sqrt[25]{3^{25}\times 3^{18}}\) - step4: Rewrite the expression: \(\sqrt[25]{3^{25}}\times \sqrt[25]{3^{18}}\) - step5: Rewrite the expression: \(3\sqrt[25]{3^{18}}\) Calculate or simplify the expression \( 3^(1.74) \). Calculate the value by following steps: - step0: Calculate: \(3^{1.74}\) - step1: Convert the expressions: \(3^{\frac{87}{50}}\) - step2: Transform the expression: \(\sqrt[50]{3^{87}}\) - step3: Rewrite the expression: \(\sqrt[50]{3^{50}\times 3^{37}}\) - step4: Rewrite the expression: \(\sqrt[50]{3^{50}}\times \sqrt[50]{3^{37}}\) - step5: Rewrite the expression: \(3\sqrt[50]{3^{37}}\) Calculate or simplify the expression \( 3^(1.71) \). Calculate the value by following steps: - step0: Calculate: \(3^{1.71}\) - step1: Convert the expressions: \(3^{\frac{171}{100}}\) - step2: Transform the expression: \(\sqrt[100]{3^{171}}\) - step3: Rewrite the expression: \(\sqrt[100]{3^{100}\times 3^{71}}\) - step4: Rewrite the expression: \(\sqrt[100]{3^{100}}\times \sqrt[100]{3^{71}}\) - step5: Rewrite the expression: \(3\sqrt[100]{3^{71}}\) Calculate or simplify the expression \( 3^(1.73) \). Calculate the value by following steps: - step0: Calculate: \(3^{1.73}\) - step1: Convert the expressions: \(3^{\frac{173}{100}}\) - step2: Transform the expression: \(\sqrt[100]{3^{173}}\) - step3: Rewrite the expression: \(\sqrt[100]{3^{100}\times 3^{73}}\) - step4: Rewrite the expression: \(\sqrt[100]{3^{100}}\times \sqrt[100]{3^{73}}\) - step5: Rewrite the expression: \(3\sqrt[100]{3^{73}}\) Calculate or simplify the expression \( 3^(1.7) \). Calculate the value by following steps: - step0: Calculate: \(3^{1.7}\) - step1: Convert the expressions: \(3^{\frac{17}{10}}\) - step2: Transform the expression: \(\sqrt[10]{3^{17}}\) - step3: Rewrite the expression: \(\sqrt[10]{3^{10}\times 3^{7}}\) - step4: Rewrite the expression: \(\sqrt[10]{3^{10}}\times \sqrt[10]{3^{7}}\) - step5: Rewrite the expression: \(3\sqrt[10]{3^{7}}\) - step6: Calculate: \(3\sqrt[10]{2187}\) Here are the calculated values of \( f(x) = 3^x \) for the chosen \( x \)-values: | \( x \) | \( f(x) = 3^x \) | |-----------|---------------------| | 1.7 | 6.473 | | 1.71 | 6.545 | | 1.72 | 6.617 | | 1.73 | 6.690 | | 1.74 | 6.764 | Now, we can observe the values of \( f(x) \) as \( x \) approaches \( \sqrt{3} \approx 1.732 \). To find a more precise approximation of \( 3^{\sqrt{3}} \), we can take the average of the values at \( x = 1.72 \) and \( x = 1.73 \): \[ \text{Average} = \frac{6.617 + 6.690}{2} \approx 6.6535 \] Thus, the approximation of \( 3^{\sqrt{3}} \) correct to three decimal places is: \[ \boxed{6.654} \]

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Mind Expander

To approximate \( 3^{\sqrt{3}} \), we can create a table of values for \( x \) that are close to \( \sqrt{3} \) (approximately 1.732). We'll evaluate \( f(x) = 3^x \) at values like 1.7, 1.71, 1.72, 1.73, and so on. | \( x \) | \( f(x) = 3^x \) | |:-----------:|:-------------------:| | 1.7 | 8.91 | | 1.71 | 8.98 | | 1.72 | 9.05 | | 1.73 | 9.13 | | 1.74 | 9.20 | From the table, we can see the values of \( f(x) \) as \( x \) approaches \( \sqrt{3} \). Noticing the progression, \( 3^{\sqrt{3}} \) is approximately 9.00 when rounded to three decimal places.

preguntas relacionadas

Latest Pre Calculus Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad