Responder
Here are the simplified results for each calculation:
1. **Simplify:**
- **a)** \( \frac{2}{4} + \frac{1}{4} = \frac{3}{4} \)
- **b)** \( \frac{2}{5} + \frac{2}{5} = \frac{4}{5} \)
- **c)** \( \frac{1}{8} + \frac{4}{8} + \frac{2}{8} = \frac{7}{8} \)
2. **Calculate:**
- **a)** \( 1 - \frac{1}{2} = \frac{1}{2} \)
- **b)** \( 1 - \frac{3}{5} = \frac{2}{5} \)
- **c)** \( 1 - \frac{4}{6} = \frac{1}{3} \)
3. **Simplify:**
- **a)** \( \frac{1}{5} + \frac{3}{4} = \frac{19}{20} \)
- **e)** \( \frac{2}{4} + \frac{2}{3} = \frac{7}{6} \) (or \( 1 \frac{1}{6} \))
- **f)** \( \frac{1}{3} - \frac{2}{8} = \frac{1}{12} \)
Solución
Calculate the value by following steps:
- step0: Calculate:
\(\frac{1}{5}+\frac{3}{4}\)
- step1: Reduce fractions to a common denominator:
\(\frac{4}{5\times 4}+\frac{3\times 5}{4\times 5}\)
- step2: Multiply the numbers:
\(\frac{4}{20}+\frac{3\times 5}{4\times 5}\)
- step3: Multiply the numbers:
\(\frac{4}{20}+\frac{3\times 5}{20}\)
- step4: Transform the expression:
\(\frac{4+3\times 5}{20}\)
- step5: Multiply the numbers:
\(\frac{4+15}{20}\)
- step6: Add the numbers:
\(\frac{19}{20}\)
Calculate or simplify the expression \( 1 - 1/2 \).
Calculate the value by following steps:
- step0: Calculate:
\(1-\frac{1}{2}\)
- step1: Reduce fractions to a common denominator:
\(\frac{2}{2}-\frac{1}{2}\)
- step2: Transform the expression:
\(\frac{2-1}{2}\)
- step3: Subtract the numbers:
\(\frac{1}{2}\)
Calculate or simplify the expression \( 2/4 + 1/4 \).
Calculate the value by following steps:
- step0: Calculate:
\(\frac{2}{4}+\frac{1}{4}\)
- step1: Transform the expression:
\(\frac{2+1}{4}\)
- step2: Add the numbers:
\(\frac{3}{4}\)
Calculate or simplify the expression \( 1/8 + 4/8 + 2/8 \).
Calculate the value by following steps:
- step0: Calculate:
\(\frac{1}{8}+\frac{4}{8}+\frac{2}{8}\)
- step1: Transform the expression:
\(\frac{1+4+2}{8}\)
- step2: Add the numbers:
\(\frac{7}{8}\)
Calculate or simplify the expression \( 2/5 + 2/5 \).
Calculate the value by following steps:
- step0: Calculate:
\(\frac{2}{5}+\frac{2}{5}\)
- step1: Transform the expression:
\(\frac{2+2}{5}\)
- step2: Add the numbers:
\(\frac{4}{5}\)
Calculate or simplify the expression \( 1 - 3/5 \).
Calculate the value by following steps:
- step0: Calculate:
\(1-\frac{3}{5}\)
- step1: Reduce fractions to a common denominator:
\(\frac{5}{5}-\frac{3}{5}\)
- step2: Transform the expression:
\(\frac{5-3}{5}\)
- step3: Subtract the numbers:
\(\frac{2}{5}\)
Calculate or simplify the expression \( 1/2 - 1/3 \).
Calculate the value by following steps:
- step0: Calculate:
\(\frac{1}{2}-\frac{1}{3}\)
- step1: Reduce fractions to a common denominator:
\(\frac{3}{2\times 3}-\frac{2}{3\times 2}\)
- step2: Multiply the numbers:
\(\frac{3}{6}-\frac{2}{3\times 2}\)
- step3: Multiply the numbers:
\(\frac{3}{6}-\frac{2}{6}\)
- step4: Transform the expression:
\(\frac{3-2}{6}\)
- step5: Subtract the numbers:
\(\frac{1}{6}\)
Calculate or simplify the expression \( 2/5 + 1/2 \).
Calculate the value by following steps:
- step0: Calculate:
\(\frac{2}{5}+\frac{1}{2}\)
- step1: Reduce fractions to a common denominator:
\(\frac{2\times 2}{5\times 2}+\frac{5}{2\times 5}\)
- step2: Multiply the numbers:
\(\frac{2\times 2}{10}+\frac{5}{2\times 5}\)
- step3: Multiply the numbers:
\(\frac{2\times 2}{10}+\frac{5}{10}\)
- step4: Transform the expression:
\(\frac{2\times 2+5}{10}\)
- step5: Multiply the numbers:
\(\frac{4+5}{10}\)
- step6: Add the numbers:
\(\frac{9}{10}\)
Calculate or simplify the expression \( 1 - 4/6 \).
Calculate the value by following steps:
- step0: Calculate:
\(1-\frac{4}{6}\)
- step1: Reduce the fraction:
\(1-\frac{2}{3}\)
- step2: Reduce fractions to a common denominator:
\(\frac{3}{3}-\frac{2}{3}\)
- step3: Transform the expression:
\(\frac{3-2}{3}\)
- step4: Subtract the numbers:
\(\frac{1}{3}\)
Calculate or simplify the expression \( 2/4 + 2/3 \).
Calculate the value by following steps:
- step0: Calculate:
\(\frac{2}{4}+\frac{2}{3}\)
- step1: Reduce the fraction:
\(\frac{1}{2}+\frac{2}{3}\)
- step2: Reduce fractions to a common denominator:
\(\frac{3}{2\times 3}+\frac{2\times 2}{3\times 2}\)
- step3: Multiply the numbers:
\(\frac{3}{6}+\frac{2\times 2}{3\times 2}\)
- step4: Multiply the numbers:
\(\frac{3}{6}+\frac{2\times 2}{6}\)
- step5: Transform the expression:
\(\frac{3+2\times 2}{6}\)
- step6: Multiply the numbers:
\(\frac{3+4}{6}\)
- step7: Add the numbers:
\(\frac{7}{6}\)
Calculate or simplify the expression \( 1/3 - 2/8 \).
Calculate the value by following steps:
- step0: Calculate:
\(\frac{1}{3}-\frac{2}{8}\)
- step1: Reduce the fraction:
\(\frac{1}{3}-\frac{1}{4}\)
- step2: Reduce fractions to a common denominator:
\(\frac{4}{3\times 4}-\frac{3}{4\times 3}\)
- step3: Multiply the numbers:
\(\frac{4}{12}-\frac{3}{4\times 3}\)
- step4: Multiply the numbers:
\(\frac{4}{12}-\frac{3}{12}\)
- step5: Transform the expression:
\(\frac{4-3}{12}\)
- step6: Subtract the numbers:
\(\frac{1}{12}\)
Here are the simplified results for each of the calculations:
### 1. Simplify:
- **a)** \( \frac{2}{4} + \frac{1}{4} = \frac{3}{4} \)
- **b)** \( \frac{2}{5} + \frac{2}{5} = \frac{4}{5} \)
- **c)** \( \frac{1}{8} + \frac{4}{8} + \frac{2}{8} = \frac{7}{8} \)
### 2. Calculate:
- **a)** \( 1 - \frac{1}{2} = \frac{1}{2} \)
- **b)** \( 1 - \frac{3}{5} = \frac{2}{5} \)
- **c)** \( 1 - \frac{4}{6} = \frac{1}{3} \)
### 3. Simplify:
- **a)** \( \frac{1}{5} + \frac{3}{4} = \frac{19}{20} \)
- **e)** \( \frac{2}{4} + \frac{2}{3} = \frac{7}{6} \) (or \( 1 \frac{1}{6} \))
- **f)** \( \frac{1}{3} - \frac{2}{8} = \frac{1}{12} \)
If you have any further questions or need additional calculations, feel free to ask!
Respondido por UpStudy AI y revisado por un tutor profesional

Explicar

Simplifique esta solución