Pregunta
upstudy study bank question image url

The following sequence forms a convergent geometric sequence: \[ 5 y ; y^{2} ; \frac{y^{3}}{5} ; \cdots \] a) Determine the possible values of \( y \). b) If \( y=2 \), Calculate \( \mathrm{S}_{\infty} \).

Ask by Cummings Murray. in South Africa
Feb 11,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

(a) y must be between -5 and 5. (b) If y = 2, the sum to infinity \( S_{\infty} \) is \( \frac{50}{3} \).

Solución

We are given the sequence:   5y, y², (y³)/5, … Step 1. Find the common ratio. • The ratio (r) is found by dividing the second term by the first term:   r = y² / (5y) = y/5. • To check consistency, divide the third term by the second term:   r = ((y³)/5) / (y²) = y/5. So, the common ratio is r = y/5. Step 2. Determine the possible values of y for convergence. A geometric series converges if |r| < 1. Substituting r = y/5:   |y/5| < 1 ⟹ |y| < 5. Thus, all values of y satisfying –5 < y < 5 will make the sequence converge. Note: This includes y = 0, which gives a constant zero sequence. Step 3. Calculate S₍∞₎ if y = 2. • When y = 2, the first term (a) is:   5y = 5(2) = 10. • The common ratio is:   r = 2/5. • The sum to infinity of a convergent geometric series is given by:   S₍∞₎ = a / (1 – r) = 10 / (1 – 2/5). • Simplify the denominator:   1 – 2/5 = 3/5. Thus,   S₍∞₎ = 10 / (3/5) = 10 × (5/3) = 50/3. Final Answers: (a) y must satisfy –5 < y < 5. (b) If y = 2, S₍∞₎ = 50/3.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Extra Insights

To determine the possible values of \( y \) for the sequence \( 5y, y^2, \frac{y^3}{5}, \cdots \) to be a convergent geometric sequence, we first need to find the common ratio \( r \). The common ratio can be found by dividing the second term by the first term and the third term by the second term: \[ r = \frac{y^2}{5y} = \frac{y}{5} \] \[ r = \frac{\frac{y^3}{5}}{y^2} = \frac{y}{5} \] Since both ratios are equal, we can deduce that the common ratio is consistent throughout the sequence. For the sequence to converge, the absolute value of the common ratio must be less than 1: \[ \left|\frac{y}{5}\right| < 1 \] This leads to two inequalities: \[ -1 < \frac{y}{5} < 1 \] Multiplying the entire inequality by 5, we find: \[ -5 < y < 5 \] Thus, the possible values of \( y \) are within the interval \( (-5, 5) \). Now, if \( y = 2 \), we can calculate the sum of the infinite geometric series \( S_{\infty} \). The formula for the sum of a convergent geometric series is given by: \[ S_{\infty} = \frac{a}{1 - r} \] where \( a \) is the first term, and \( r \) is the common ratio. Substituting \( y = 2 \): - The first term \( a = 5y = 5 \times 2 = 10 \). - The common ratio \( r = \frac{y}{5} = \frac{2}{5} \). Now we substitute these values into the sum formula: \[ S_{\infty} = \frac{10}{1 - \frac{2}{5}} = \frac{10}{\frac{3}{5}} = 10 \times \frac{5}{3} = \frac{50}{3} \] So, \( S_{\infty} = \frac{50}{3} \).

preguntas relacionadas

Latest Pre Calculus Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad