Suppose that the functions \( f \) and \( g \) are defined as follows. \[ f(x)=\frac{x-9}{x+5} \quad g(x)=\frac{x}{x+5} \] Find \( \frac{f}{g} \), Then, give its domain using an interval or union of interval Simplify your answers. \( \left(\frac{f}{g}\right)(x)= \) II Domain of \( \frac{f}{g} \) :
Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


Beyond the Answer
To find \( \frac{f}{g} \), we start with the definitions of \( f(x) \) and \( g(x) \): \[ \frac{f}{g}(x) = \frac{f(x)}{g(x)} = \frac{\frac{x-9}{x+5}}{\frac{x}{x+5}} \] This simplifies as follows: \[ \frac{f}{g}(x) = \frac{x-9}{x+5} \cdot \frac{x+5}{x} = \frac{x-9}{x} \] Therefore, \[ \left(\frac{f}{g}\right)(x) = \frac{x-9}{x} \] Next, we determine the domain of \( \frac{f}{g} \). The function \( g(x) \) cannot be zero, so we set \( g(x) = \frac{x}{x+5} \) not equal to zero: \[ \frac{x}{x+5} \neq 0 \implies x \neq 0 \] Additionally, we must consider the point where \( g(x) \) is undefined, which occurs when \( x + 5 = 0 \), or \( x = -5 \). Therefore, the domain of \( \frac{f}{g} \) excludes the points where \( x = -5 \) and \( x = 0 \). In interval notation, this domain is: Domain of \( \frac{f}{g} \) : \( (-\infty, -5) \cup (-5, 0) \cup (0, \infty) \)
