Pregunta
upstudy study bank question image url

The length of the shadow for \( v \) in the figure shown is the absolute value of the vector's horizontal component. The magnitude and direction angle of \( v \) are given. Write \( v \) in terms of \( i \) and \( j \). Then find the length of the shadow. \[ v \|=1.4 \text { inches, } \theta=32^{\circ} \] \( v=\square \) (Type your answer in terms of \( i \) and \( j \). Round to the nearest tenth as needed.) The length of the shadow is \( \square \) inches. (Round to the nearest tenth as needed.)

Ask by Mccoy Daniel. in the United States
Feb 24,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

\( v = 1.4 \cos(32^\circ) \, i + 1.4 \sin(32^\circ) \, j \) The length of the shadow is approximately 1.2 inches.

Solución

Given that the magnitude of the vector \( v \) is 1.4 inches and the direction angle is \( 32^\circ \), we can express \( v \) in terms of the unit vectors \( i \) and \( j \) as follows: \[ v = 1.4 \cos(32^\circ) i + 1.4 \sin(32^\circ) j \] To find the length of the shadow, we need to find the horizontal component of \( v \), which is the absolute value of the vector's horizontal component. The horizontal component of \( v \) is given by \( 1.4 \cos(32^\circ) \). Therefore, the length of the shadow is \( 1.4 \cos(32^\circ) \) inches. Let's calculate the length of the shadow. The length of the shadow is approximately 1.2 inches.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To express vector \( v \) in terms of \( i \) and \( j \), we can use the magnitude and direction angle. The horizontal component can be calculated using the cosine of the angle, and the vertical component using the sine: \[ v = v \cos(\theta) i + v \sin(\theta) j \] Substituting the values: \[ v = 1.4 \cos(32^{\circ}) i + 1.4 \sin(32^{\circ}) j \] Calculating the components: - For the horizontal component (using cosine): \[ 1.4 \cos(32^{\circ}) \approx 1.4 \times 0.846 = 1.1835 \quad (\text{rounding to } 1.2) \] - For the vertical component (using sine): \[ 1.4 \sin(32^{\circ}) \approx 1.4 \times 0.529 = 0.7406 \quad (\text{rounding to } 0.7) \] Therefore, the vector can be written as: \[ v \approx 1.2 i + 0.7 j \] The length of the shadow is equal to the absolute value of the horizontal component, which we calculated as approximately \( 1.2 \) inches. So, the answers are: \( v \approx 1.2 i + 0.7 j \) The length of the shadow is approximately \( 1.2 \) inches.

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad