Pregunta
upstudy study bank question image url

Compound Angles 1. No calculator, determine the value 1. \( \cos 105^{\circ} \) \( 12 \sin 165^{\circ} \) 2. Prove that : \( 2.1^{\cos 105^{\circ}}-\cos 15^{\circ}=-\frac{\sqrt{6}}{2} \) \( 2.2 \tan 75^{\circ}=2+\sqrt{3} \) \( 2.3 \cos 78^{\circ}+\cos 42^{\circ}=\cos 18^{\circ} \) \[ H / W \] Prove that: 1.1 \( 2 \sin 4 x \cos 3 x-\sin 7 x=\sin x \) 1.2 \( \sin 5 x-2 \cos 3 x \sin 2 x=\cos \left(90^{\circ}-x\right) \) k3 \( \cos (x+y) \cdot \cos (x-y)=\cos ^{2} x-\sin ^{2} y \) 1.4 \( 2 \sin \left(45^{\circ}+\alpha\right) \sin \left(45^{\circ}-\alpha\right)=\cos ^{2} \alpha-\sin ^{2} \alpha \) 1.5 \( (\cos 8 x+\sin 8 x)(\cos 3 x+\sin 3 x)=\cos 5 x+\sin \)

Ask by Nguyen Bird. in South Africa
Feb 20,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

**Part 1: Calculations** 1. **Calculate \( \cos 105^{\circ} \) and \( 12 \sin 165^{\circ} \)** - \( \cos 105^{\circ} = -\frac{\sqrt{6} - \sqrt{2}}{4} \) - \( 12 \sin 165^{\circ} = 3(\sqrt{6} - \sqrt{2}) \) **Part 2: Proofs** 1. **Prove \( 2 \cdot 1^{\cos 105^{\circ}} - \cos 15^{\circ} = -\frac{\sqrt{6}}{2} \)** - Calculation shows that the statement is not true. 2. **Prove \( \tan 75^{\circ} = 2 + \sqrt{3} \)** - Using the tangent addition formula, \( \tan 75^{\circ} = 2 + \sqrt{3} \) is proven. 3. **Prove \( \cos 78^{\circ} + \cos 42^{\circ} = \cos 18^{\circ} \)** - Using the cosine addition formula, the identity holds true. **Part 3: Trigonometric Identities** 1. **Prove \( 2 \sin 4x \cos 3x - \sin 7x = \sin x \)** - Using product-to-sum identities, the identity is proven. 2. **Prove \( \sin 5x - 2 \cos 3x \sin 2x = \cos(90^{\circ} - x) \)** - Simplifying both sides using trigonometric identities, the equality is established. 3. **Prove \( \cos(x + y) \cdot \cos(x - y) = \cos^2 x - \sin^2 y \)** - Applying the cosine addition and subtraction formulas, the identity is proven. 4. **Prove \( 2 \sin(45^{\circ} + \alpha) \sin(45^{\circ} - \alpha) = \cos^2 \alpha - \sin^2 \alpha \)** - Using product-to-sum identities, the identity holds true. 5. **Prove \( (\cos 8x + \sin 8x)(\cos 3x + \sin 3x) = \cos 5x + \sin \)** - Expanding and simplifying, the identity is proven.

Solución

¡Inicia sesión para desbloquear respuestas gratis!

Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

star-icon Descubrir

Respondido por UpStudy AI y revisado por un tutor profesional

Bonus Knowledge

Did you know that the angles 105° and 165° are commonly encountered in various geometric problems and can be broken down using known angle identities? For instance, \( \cos 105^{\circ} \) can be expressed as \( \cos(90^{\circ} + 15^{\circ}) \) using the cosine of a sum identity, which leads to evaluations involving \( \sin 15^{\circ} \). On the other hand, \( \sin 165^{\circ} \) can be rewritten as \( \sin(180^{\circ} - 15^{\circ}) \), giving us \( \sin 15^{\circ} \) as well, creating a fun connection between these angles! When proving the equation \( \tan 75^{\circ} = 2 + \sqrt{3} \), you've got a playful trip down trigonometric relationships! Recognizing that \( 75^{\circ} \) can be rewritten as \( 45^{\circ} + 30^{\circ} \) sets the stage for applying the tangent sum formula, leading to \( \tan(45^{\circ}) + \tan(30^{\circ}) \). Fleeting between rational and irrational ratios makes the result both satisfying and a perfect warm-up for your math journey!

preguntas relacionadas

8. Simplify without using a calculator. (8.1) \( \frac{\sin \left(180^{\circ}-x\right) \cdot \tan \left(360^{\circ}-x\right)}{\cos \left(80^{\circ}-x\right)} \times \frac{\cos \left(-180^{\circ}-x\right)}{\cos \left(360^{\circ}+x\right) \sin \left(360^{\circ}-x\right)} \) \( 8.2 \frac{\cos 135^{\circ} \sin 160^{\circ}}{\sin 225^{\circ} \cos 70^{\circ}} \) (8.3) \( \frac{\sin (-\theta)+\cos 120^{\circ}+\tan \left(-180^{\circ}-\theta\right)}{\sin ^{2} 225^{\circ}-\tan (-\theta)-\cos \left(90^{\circ}+\theta\right)} \) B.4 \( 4^{x} \frac{\sin 247^{\circ} \cdot \tan 23^{\circ} \cdot \cos 113^{\circ}}{\sin \left(-157^{\circ}\right)} \) (8.5) \( \frac{3 \cos 150^{\circ} \cdot \sin 270^{\circ}}{\tan \left(-45^{\circ}\right) \cdot \cos 600^{\circ}} \) 8.6) \( \frac{\tan \left(180^{\circ}-x\right) \cdot \sin \left(90^{\circ}+x\right)}{\sin (-x)}-\sin y \cdot \cos \left(90^{\circ}-y\right) \) \( 8.7 \frac{\tan 30^{\circ} \cdot \sin 60^{\circ} \cdot \cos 25^{\circ}}{\cos 135^{\circ} \cdot \sin \left(-45^{\circ}\right) \cdot \sin 65^{\circ}} \) 6.8) \( \frac{\tan \left(180^{\circ}-x\right) \cdot \sin \left(90^{\circ}-x\right)}{\cos \left(90^{\circ}+x\right)}-\frac{\cos \left(180^{\circ}-x\right)}{\sin \left(90^{\circ}+x\right)} \) \( 8.9 \frac{\sin 189^{\circ}}{\tan 549^{\circ}}-\frac{\cos ^{2}\left(-9^{\circ}\right)}{\sin 99^{\circ}} \) Solving trigonometric equations (no calculators) (1.) If \( \sin \mathrm{A}=\frac{-3}{5} \) and \( 0^{\circ}<\mathrm{A}<270^{\circ} \) determine the value of: \( 1.1 \cos A \) \( 1.2 \tan A \). (2.) If \( -5 \tan \theta-3=0 \) and \( \sin \theta<0 \), determine: \( 2.1 \sin ^{2} \theta^{\circ} \) \( 2.25 \cos \theta \) \( 2.3 \quad 1-\cos ^{2} \theta \) 3. If \( 13 \cos \theta+12=0 \) and \( 180^{\circ}<\theta<360^{\circ} \), evaluate: \( 3.2 \tan \theta \) \( 3.1 \sin \theta \cos \theta \) \( 3.3 \sin ^{2} \theta+\cos ^{2} \theta \). (4.) If \( 3 \tan \theta-2=0 \) and \( \theta \in\left[90^{\circ} ; 360^{\circ}\right] \), determine, the value of \( \sqrt{13}(\sin \theta-\cos \theta \) (5.) If \( \cos 52^{\circ}=k \) as illustrated in the diagram, determine each of the following i
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad