Compound Angles 1. No calculator, determine the value 1. \( \cos 105^{\circ} \) \( 12 \sin 165^{\circ} \) 2. Prove that : \( 2.1^{\cos 105^{\circ}}-\cos 15^{\circ}=-\frac{\sqrt{6}}{2} \) \( 2.2 \tan 75^{\circ}=2+\sqrt{3} \) \( 2.3 \cos 78^{\circ}+\cos 42^{\circ}=\cos 18^{\circ} \) \[ H / W \] Prove that: 1.1 \( 2 \sin 4 x \cos 3 x-\sin 7 x=\sin x \) 1.2 \( \sin 5 x-2 \cos 3 x \sin 2 x=\cos \left(90^{\circ}-x\right) \) k3 \( \cos (x+y) \cdot \cos (x-y)=\cos ^{2} x-\sin ^{2} y \) 1.4 \( 2 \sin \left(45^{\circ}+\alpha\right) \sin \left(45^{\circ}-\alpha\right)=\cos ^{2} \alpha-\sin ^{2} \alpha \) 1.5 \( (\cos 8 x+\sin 8 x)(\cos 3 x+\sin 3 x)=\cos 5 x+\sin \)
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Bonus Knowledge
Did you know that the angles 105° and 165° are commonly encountered in various geometric problems and can be broken down using known angle identities? For instance, \( \cos 105^{\circ} \) can be expressed as \( \cos(90^{\circ} + 15^{\circ}) \) using the cosine of a sum identity, which leads to evaluations involving \( \sin 15^{\circ} \). On the other hand, \( \sin 165^{\circ} \) can be rewritten as \( \sin(180^{\circ} - 15^{\circ}) \), giving us \( \sin 15^{\circ} \) as well, creating a fun connection between these angles! When proving the equation \( \tan 75^{\circ} = 2 + \sqrt{3} \), you've got a playful trip down trigonometric relationships! Recognizing that \( 75^{\circ} \) can be rewritten as \( 45^{\circ} + 30^{\circ} \) sets the stage for applying the tangent sum formula, leading to \( \tan(45^{\circ}) + \tan(30^{\circ}) \). Fleeting between rational and irrational ratios makes the result both satisfying and a perfect warm-up for your math journey!
