2.1) \( \frac{x}{\sqrt{3}}+3=\frac{x}{\sqrt{5}} \)
Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


Bonus Knowledge
To solve the equation \( \frac{x}{\sqrt{3}} + 3 = \frac{x}{\sqrt{5}} \), let’s start by isolating \( x \). First, subtract \( \frac{x}{\sqrt{3}} \) from both sides: \[ 3 = \frac{x}{\sqrt{5}} - \frac{x}{\sqrt{3}} \] Now, to combine the right-hand side, we need a common denominator, which is \( \sqrt{15} \): \[ 3 = \frac{x \sqrt{3} - x \sqrt{5}}{\sqrt{15}} \] Factor out \( x \) from the numerator: \[ 3 = \frac{x(\sqrt{3} - \sqrt{5})}{\sqrt{15}} \] Now, multiply both sides by \( \sqrt{15} \): \[ 3\sqrt{15} = x(\sqrt{3} - \sqrt{5}) \] Finally, solve for \( x \): \[ x = \frac{3\sqrt{15}}{\sqrt{3} - \sqrt{5}} \] And that’s your answer! To further simplify, you could rationalize the denominator if needed. Enjoy unraveling the mystery of \( x \)!
