Responder
The solutions are \( (2, -1) \) and \( (-5, -2) \).
Solución
Solve the system of equations by following steps:
- step0: Solve using the substitution method:
\(\left\{ \begin{array}{l}\left(x-2y\right)\left(2x+y\right)-12=0\\7y-x+9=0\end{array}\right.\)
- step1: Solve the equation:
\(\left\{ \begin{array}{l}\left(x-2y\right)\left(2x+y\right)-12=0\\x=7y+9\end{array}\right.\)
- step2: Substitute the value of \(x:\)
\(\left(7y+9-2y\right)\left(2\left(7y+9\right)+y\right)-12=0\)
- step3: Simplify:
\(75y^{2}+225y+150=0\)
- step4: Factor the expression:
\(75\left(y+1\right)\left(y+2\right)=0\)
- step5: Divide the terms:
\(\left(y+1\right)\left(y+2\right)=0\)
- step6: Separate into possible cases:
\(\begin{align}&y+1=0\\&y+2=0\end{align}\)
- step7: Solve the equation:
\(\begin{align}&y=-1\\&y=-2\end{align}\)
- step8: Calculate:
\(y=-1\cup y=-2\)
- step9: Rearrange the terms:
\(\left\{ \begin{array}{l}x=7y+9\\y=-1\end{array}\right.\cup \left\{ \begin{array}{l}x=7y+9\\y=-2\end{array}\right.\)
- step10: Calculate:
\(\left\{ \begin{array}{l}x=2\\y=-1\end{array}\right.\cup \left\{ \begin{array}{l}x=-5\\y=-2\end{array}\right.\)
- step11: Calculate:
\(\left\{ \begin{array}{l}x=-5\\y=-2\end{array}\right.\cup \left\{ \begin{array}{l}x=2\\y=-1\end{array}\right.\)
- step12: Check the solution:
\(\left\{ \begin{array}{l}x=-5\\y=-2\end{array}\right.\cup \left\{ \begin{array}{l}x=2\\y=-1\end{array}\right.\)
- step13: Rewrite:
\(\left(x,y\right) = \left(-5,-2\right)\cup \left(x,y\right) = \left(2,-1\right)\)
To solve the system of equations given by:
1. \( (x-2y)(2x+y) = 12 \)
2. \( 7y - x + 9 = 0 \)
we can find the solutions step by step.
### Step 1: Rewrite the equations
The first equation can be rewritten as:
\[
(x-2y)(2x+y) - 12 = 0
\]
The second equation can be rearranged to express \( x \) in terms of \( y \):
\[
x = 7y + 9
\]
### Step 2: Substitute \( x \) in the first equation
Now, substitute \( x = 7y + 9 \) into the first equation:
\[
((7y + 9) - 2y)(2(7y + 9) + y) = 12
\]
This simplifies to:
\[
(5y + 9)(14y + 18 + y) = 12
\]
\[
(5y + 9)(15y + 18) = 12
\]
### Step 3: Expand and simplify
Now, expand the left side:
\[
75y^2 + 90y + 135y + 162 = 12
\]
Combine like terms:
\[
75y^2 + 225y + 162 - 12 = 0
\]
\[
75y^2 + 225y + 150 = 0
\]
### Step 4: Factor or use the quadratic formula
We can simplify this equation by dividing everything by 75:
\[
y^2 + 3y + 2 = 0
\]
Now, factor the quadratic:
\[
(y + 1)(y + 2) = 0
\]
### Step 5: Solve for \( y \)
Setting each factor to zero gives us:
\[
y + 1 = 0 \quad \Rightarrow \quad y = -1
\]
\[
y + 2 = 0 \quad \Rightarrow \quad y = -2
\]
### Step 6: Find corresponding \( x \) values
Now, substitute these \( y \) values back into \( x = 7y + 9 \):
1. For \( y = -1 \):
\[
x = 7(-1) + 9 = 2
\]
2. For \( y = -2 \):
\[
x = 7(-2) + 9 = -5
\]
### Final Solutions
The solutions to the system of equations are:
\[
(x, y) = (2, -1) \quad \text{and} \quad (x, y) = (-5, -2)
\]
Respondido por UpStudy AI y revisado por un tutor profesional

Explicar

Simplifique esta solución