Pregunta
upstudy study bank question image url

Simplify the expression completel \[ \frac{x^{3}-4 x^{2}}{x^{2}-5 x+4} \]

Ask by Reese Daniel. in the United States
Feb 19,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The simplified expression is \( \frac{x^{2}}{x-1} \).

Solución

¡Inicia sesión para desbloquear respuestas gratis!

Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

star-icon Descubrir

Respondido por UpStudy AI y revisado por un tutor profesional

The Deep Dive

To simplify the expression \(\frac{x^{3}-4 x^{2}}{x^{2}-5 x+4}\), we can start with factorization. First, factor the numerator \(x^{3}-4 x^{2}\): \[ x^{2}(x - 4) \] Now, for the denominator \(x^{2}-5 x+4\), we look for two numbers that multiply to \(4\) and add up to \(-5\). The numbers are \(-4\) and \(-1\). Thus, we can factor the denominator as: \[ (x - 4)(x - 1) \] Now we can rewrite the original expression with the factored forms: \[ \frac{x^{2}(x - 4)}{(x - 4)(x - 1)} \] Next, we can cancel the common factor \((x - 4)\) from the numerator and the denominator (note that \(x \neq 4\)): \[ \frac{x^{2}}{x - 1} \] Thus, the simplified expression is: \[ \frac{x^{2}}{x - 1} \quad (x \neq 4) \]

preguntas relacionadas

Latest Algebra Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad