\( 1 \leftarrow \quad \begin{array}{l}\frac{x^{2}+6}{x^{2}-6 x+8} \\ \frac{x^{2}+6}{x^{2}-6 x+8} \\ \text { (Simplify your answer.) }\end{array} \)
Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


Mind Expander
To simplify the expression \(\frac{x^{2}+6}{x^{2}-6 x+8}\), we first need to factor the denominator. The expression \(x^{2}-6x+8\) can be factored as \((x-2)(x-4)\). Now the expression becomes: \[ \frac{x^{2}+6}{(x-2)(x-4)} \] Since \(x^{2}+6\) does not factor further and does not share any common factors with \((x-2)(x-4)\), we cannot simplify the fraction any further. Thus, the simplified expression remains: \[ \frac{x^{2}+6}{(x-2)(x-4)} \] Just be careful when substituting values for \(x\); \(x\) cannot be 2 or 4 as these will make the denominator zero!
