Pregunta

Describe the general shape and key features of the graph of a logarithmic function, including any asymptotes.

Ask by Martinez Elliott. in the United States
Nov 25,2024

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The graph of a logarithmic function is a curve that increases slowly, starts at negative infinity, and has a vertical asymptote at \( x = 0 \). It intersects the y-axis at \( (1, 0) \) and has a domain of \( (0, \infty) \) and a range of \( (-\infty, \infty) \).

Solución

The graph of a logarithmic function, typically expressed in the form \( y = \log_b(x) \) where \( b > 0 \) and \( b \neq 1 \), has several key features and a distinct shape: 1. **Shape**: The graph of a logarithmic function is a continuous curve that increases slowly as \( x \) increases. It starts from negative infinity and rises gradually, never reaching a maximum value. 2. **Domain**: The domain of the logarithmic function is \( (0, \infty) \). This means that the function is defined only for positive values of \( x \). 3. **Range**: The range of the logarithmic function is \( (-\infty, \infty) \). This indicates that the output can take any real number value. 4. **Intercept**: The graph intersects the y-axis at the point \( (1, 0) \) because \( \log_b(1) = 0 \) for any base \( b \). 5. **Asymptote**: The graph has a vertical asymptote at \( x = 0 \). As \( x \) approaches 0 from the right, the value of \( y \) approaches negative infinity. This means that the graph gets closer and closer to the y-axis but never touches or crosses it. 6. **Behavior**: As \( x \) increases, the function increases without bound, but the rate of increase slows down. For large values of \( x \), the logarithmic function grows very slowly compared to polynomial or exponential functions. 7. **Key Points**: Some key points on the graph include: - \( (1, 0) \) since \( \log_b(1) = 0 \) - \( (b, 1) \) since \( \log_b(b) = 1 \) - \( (b^2, 2) \) since \( \log_b(b^2) = 2 \), and so on. In summary, the graph of a logarithmic function is characterized by its gradual increase, vertical asymptote at \( x = 0 \), and the ability to take on all real values as \( x \) varies over its domain.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

The graph of a logarithmic function, such as \( y = \log_b(x) \), typically has a characteristic "swooping" shape that rises slowly from the left and continues to expand to the right. The key feature is that it never touches or crosses the vertical line at \( x = 0 \), which acts as a vertical asymptote. As \( x \) approaches zero from the right, the function heads toward negative infinity. The graph also steadily increases without bound as \( x \) increases, but the growth rate diminishes over time, giving it a logarithmic curve. In practical terms, logarithmic functions are often used in areas such as sound intensity (decibels), pH levels in chemistry, and the Richter scale for earthquakes. For example, a small increase in the Richter scale represents a significant increase in actual energy release during an earthquake. This makes logarithmic scales invaluable in comparing quantities that span several orders of magnitude, enabling us to grasp the significance of very large or very small values in a more relatable manner.

preguntas relacionadas

Latest Pre Calculus Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad