Pregunta
upstudy study bank question image url

Question What is the equation of the line that passes through the point \( (-3,6) \) and has a slope of -4 ? Answer Attempt 1 out of 3

Ask by Mcdonald Harper. in the United States
Feb 21,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The equation of the line is \( y = -4x - 6 \).

Solución

To find the equation of a line that passes through a given point and has a specific slope, we can use the point-slope form of the equation of a line, which is given by: \[ y - y_1 = m(x - x_1) \] where: - \( (x_1, y_1) \) is the point the line passes through, - \( m \) is the slope of the line. In this case, the point is \( (-3, 6) \) and the slope \( m \) is -4. Let's substitute these values into the point-slope form: 1. Identify \( x_1 \) and \( y_1 \): - \( x_1 = -3 \) - \( y_1 = 6 \) 2. Substitute into the equation: \[ y - 6 = -4(x + 3) \] Now, let's simplify this equation step by step: 1. Distribute the slope on the right side: \[ y - 6 = -4x - 12 \] 2. Add 6 to both sides to solve for \( y \): \[ y = -4x - 12 + 6 \] \[ y = -4x - 6 \] Thus, the equation of the line in slope-intercept form is: \[ y = -4x - 6 \] This is the final answer.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Extra Insights

To find the equation of a line with a given slope that passes through a specific point, you can use the point-slope form of the equation: \( y - y_1 = m(x - x_1) \), where \( m \) is the slope and \((x_1, y_1)\) is the point on the line. Plugging in your values, we get \( y - 6 = -4(x + 3) \). Simplifying this gives you \( y = -4x - 6 \). Voilà! You have the line’s equation. Now, did you know that point-slope form is super handy for graphing lines quickly? Once you have your line’s equation, you can easily plot it by starting at the point and using the slope to find other points. In this case, from \((-3, 6)\), you would go down 4 units and 1 unit to the right for every step—you'll see your line take shape in no time! A common mistake people often make when using the point-slope form is forgetting to distribute the slope correctly. Ensure you apply the slope to both components in the equation when expanding. And don't skip simplifying your equation; it makes it clearer and easier to work with! So, keep an eye on those signs and distribute carefully!

preguntas relacionadas

Latest Algebra Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad