\( f(x)=x^{2}-10 x-56 \) 1) What are the zeros of the function? Write the smaller \( x \) first, and the larger \( x \) second. smaller \( x= \) larger \( x= \) 2) What is the vertex of the parabola? 2
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Bonus Knowledge
To find the zeros of the function \( f(x) = x^{2} - 10x - 56 \), we can factor the quadratic. The function factors to \( (x - 14)(x + 4) = 0 \). Thus, the zeros are: smaller \( x = -4 \) larger \( x = 14 \) For the vertex of the parabola, we use the vertex formula \( x = -\frac{b}{2a} \) where \( a = 1 \) and \( b = -10 \). Plugging in the values, we get \( x = 5 \). To find the corresponding y-coordinate, substitute \( x = 5 \) back into the function: \( f(5) = 5^{2} - 10(5) - 56 = -81 \). Therefore, the vertex is: vertex \( (5, -81) \)
