\[ g(x)=\frac{3+3 x^{4}-2 x^{5}}{x} \] \[ \text { Divide the factors. } \] \[ \text {. } \]
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Mind Expander
To factor the function \( g(x) = \frac{3 + 3x^4 - 2x^5}{x} \), we first simplify the expression. We can rewrite it as \( g(x) = \frac{-2x^5 + 3x^4 + 3}{x} \), which simplifies to \( g(x) = -2x^4 + 3x^3 + \frac{3}{x} \). Now, we can consider factoring the polynomial part \( -2x^5 + 3x^4 + 3 \). By applying methods like synthetic division or using the Rational Root Theorem, we may find potential roots, which help in factoring. Eventually, we can express it in a more manageable form, possibly by grouping as needed. Also, don't forget that when \( x = 0 \), \( g(x) \) is undefined since it involves division by zero. When dealing with polynomials, always check domain restrictions!
