Pregunta
upstudy study bank question image url

(b) If \( 5 \cos \alpha+4=0 \) with \( \alpha \in\left[0^{\circ} ; 180^{\circ}\right] \) and \( 13 \sin \beta+12=0 \) with \( \tan \beta>0 \), determine the value of the following without the use of a calculator and with the aid of a diagram: \( \begin{array}{ll}\text { (1) } \sin (\alpha-\beta) & \text { (2) } \cos (\alpha+\beta) \\ \text { (4) } \tan 2 \alpha & \end{array} \)

Ask by Norton Floyd. in South Africa
Feb 20,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

sin(α – β) = –63/65 cos(α + β) = 56/65 tan 2α = –24/7

Solución

We are given two equations and some conditions: • For α: 5 cos α + 4 = 0 with α ∈ [0°, 180°]. • For β: 13 sin β + 12 = 0 with tan β > 0. Step 1. Determine sin α and cos α From 5 cos α + 4 = 0:   cos α = –4/5. Since α is between 0° and 180° and cos α is negative, α must lie in Quadrant II, where sin α is positive. Hence,   sin α = √(1 – cos²α) = √(1 – (16/25)) = √(9/25) = 3/5. Step 2. Determine sin β and cos β From 13 sin β + 12 = 0:   sin β = –12/13. Since tan β > 0, the sine and cosine must have the same sign. Here sin β is negative, so cos β must also be negative (which happens in Quadrant III). Now compute cos β:   cos β = –√(1 – sin²β) = –√(1 – (144/169)) = –√(25/169) = –5/13. Step 3. Compute the required expressions (1) To find sin (α – β) we use the identity:   sin (α – β) = sin α cos β – cos α sin β. Substitute the known values:   sin (α – β) = (3/5)(–5/13) – (–4/5)(–12/13)           = (–15/65) – (48/65)           = –63/65. (2) To find cos (α + β) we use the identity:   cos (α + β) = cos α cos β – sin α sin β. Substitute the known values:   cos (α + β) = (–4/5)(–5/13) – (3/5)(–12/13)           = (20/65) + (36/65)           = 56/65. (4) To find tan 2α we use the double-angle formula for tangent:   tan 2α = (2 tan α)/(1 – tan²α). First, calculate tan α:   tan α = sin α/cos α = (3/5)/(–4/5) = –3/4. Now substitute:   tan 2α = (2(–3/4))/(1 – (9/16))        = (–3/2)/(7/16)        = (–3/2) × (16/7)        = –48/14        = –24/7. Step 4. Diagrams and Final Answers A rough sketch of the situation for each angle is helpful: • For α, draw a right triangle in Quadrant II. The adjacent side (to the angle) is –4 (negative because it lies on the negative x–axis) and the opposite side is 3 (positive because y is positive in Quadrant II) with hypotenuse 5. • For β, since it is in Quadrant III, draw a triangle with both legs negative. Here, sin β = –12/13 represents the opposite side and cos β = –5/13 represents the adjacent side with hypotenuse 13. Thus, the answers are:  (1) sin(α – β) = –63/65  (2) cos(α + β) = 56/65  (4) tan 2α = –24/7 These are the exact values determined without the use of a calculator.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

The Deep Dive

To solve the equations step by step, let's first tackle the trigonometric equations provided. ### Finding \(\alpha\) Given the equation: \[ 5 \cos \alpha + 4 = 0 \] We can rearrange it to find \(\cos \alpha\): \[ 5 \cos \alpha = -4 \implies \cos \alpha = -\frac{4}{5} \] In the interval \([0^\circ, 180^\circ]\), \(\cos \alpha\) is negative in the second quadrant, implying that: \[ \alpha = 180^\circ - \cos^{-1}\left(\frac{4}{5}\right) \] From the known values of a right triangle with opposite side \(4\), adjacent side \(3\) (since \(3^2 + 4^2 = 5^2\)), the sine value becomes: \[ \sin \alpha = \frac{4}{5} \] ### Finding \(\beta\) Next, consider the equation: \[ 13 \sin \beta + 12 = 0 \] Rearranging gives: \[ 13 \sin \beta = -12 \implies \sin \beta = -\frac{12}{13} \] Since \(\tan \beta > 0\), \(\beta\) must be in the third quadrant (where sine is negative and cosine is also negative). Thus, we can find \(\cos \beta\) using the Pythagorean identity: \[ \cos^2 \beta = 1 - \sin^2 \beta = 1 - \left(-\frac{12}{13}\right)^2 = 1 - \frac{144}{169} = \frac{25}{169} \implies \cos \beta = -\frac{5}{13} \] Now we have: \[ \sin \beta = -\frac{12}{13}, \quad \cos \beta = -\frac{5}{13} \] ### Finding \( \sin(\alpha - \beta) \) Using the sine angle subtraction formula: \[ \sin(\alpha - \beta) = \sin \alpha \cos \beta - \cos \alpha \sin \beta \] Substituting the values obtained: \[ \sin(\alpha - \beta) = \left(\frac{4}{5}\right)\left(-\frac{5}{13}\right) - \left(-\frac{4}{5}\right)\left(-\frac{12}{13}\right) \] Calculating each term: \[ \sin(\alpha - \beta) = -\frac{4}{13} - \frac{48}{65} \] Finding a common denominator yields: \[ = -\frac{20}{65} - \frac{48}{65} = -\frac{68}{65} \] ### Finding \( \cos(\alpha + \beta) \) Using the cosine angle addition formula: \[ \cos(\alpha + \beta) = \cos \alpha \cos \beta - \sin \alpha \sin \beta \] Substituting the known values: \[ \cos(\alpha + \beta) = \left(-\frac{4}{5}\right)\left(-\frac{5}{13}\right) - \left(\frac{4}{5}\right)\left(-\frac{12}{13}\right) \] Calculating each term: \[ = \frac{20}{65} + \frac{48}{65} = \frac{68}{65} \] ### Finding \( \tan 2\alpha \) Using the double angle formula: \[ \tan(2\alpha) = \frac{2 \tan \alpha}{1 - \tan^2 \alpha} \] Finding \(\tan \alpha\): \[ \tan \alpha = \frac{\sin \alpha}{\cos \alpha} = \frac{\frac{4}{5}}{-\frac{4}{5}} = -1 \] Substituting into the double angle formula: \[ \tan(2\alpha) = \frac{2(-1)}{1 - (-1)^2} = \frac{-2}{1 - 1} \text{ (indeterminate form, undefined)} \] Final answers: \[ \sin(\alpha - \beta) = -\frac{68}{65}, \quad \cos(\alpha + \beta) = \frac{68}{65}, \quad \tan(2\alpha) = \text{undefined} \]

preguntas relacionadas

Latest Trigonometry Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad