Pregunta
upstudy study bank question image url

A function of the form \( p(x)=a x^{2}+q \) has two \( x \)-intercepts, one of which is 9 . Determine the other \( x \)-intercept and explain how you arrived at your answer. \( p(x)=a x^{2}+q \)

Ask by Bond Daniel. in Canada
Feb 21,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The other \( x \)-intercept is \(-9\).

Solución

To find the other \( x \)-intercept of the function \( p(x) = ax^2 + q \), we can follow these steps: 1. **Understanding the x-intercepts**: The \( x \)-intercepts of a function occur where \( p(x) = 0 \). Therefore, we need to solve the equation \( ax^2 + q = 0 \). 2. **Using the given information**: We know that one of the \( x \)-intercepts is 9. This means that when \( x = 9 \), \( p(9) = 0 \). We can substitute this into the equation: \[ a(9^2) + q = 0 \] Simplifying this gives: \[ 81a + q = 0 \quad \text{(1)} \] 3. **Finding the other x-intercept**: The function \( p(x) = ax^2 + q \) is a quadratic function, and it can be expressed in factored form as: \[ p(x) = a(x - r_1)(x - r_2) \] where \( r_1 \) and \( r_2 \) are the \( x \)-intercepts. Since we know one intercept \( r_1 = 9 \), we can express the function as: \[ p(x) = a(x - 9)(x - r_2) \] 4. **Finding the sum of the roots**: The sum of the roots of a quadratic equation \( ax^2 + bx + c = 0 \) is given by \( r_1 + r_2 = -\frac{b}{a} \). In our case, since there is no linear term in \( p(x) \), we can deduce that the sum of the roots must be zero (as the coefficient of \( x \) is zero). Therefore: \[ 9 + r_2 = 0 \] Solving for \( r_2 \): \[ r_2 = -9 \] Thus, the other \( x \)-intercept is \(-9\). In summary, we arrived at this conclusion by using the properties of quadratic functions and the information about the known \( x \)-intercept. The other \( x \)-intercept is \(-9\).

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Mind Expander

To find the second \( x \)-intercept, we can use the property of the roots of a quadratic function. The function \( p(x) = a x^{2} + q \) has a parabolic shape and is symmetrical around its vertex. If one \( x \)-intercept is 9, you can express the two \( x \)-intercepts in terms of their sum. The formula for the sum of the roots \( r_1 + r_2 \) is given by \( -\frac{b}{a} \) for the general form \( ax^2 + bx + c \). In this case, since \( b = 0 \), the sum of the roots is zero. Therefore, if one intercept is 9, the other must be -9. This gives us the two intercepts as 9 and -9, ensuring that their sum equals zero, depicting the symmetry of the quadratic function.

preguntas relacionadas

Latest Algebra Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad