Responder
Here are the solutions for each equation:
1. **Equation (3)**: \( x = 2 \)
2. **Equation (5)**: \( x = 0 \) or \( x = 1 \)
3. **Equation (7)**: \( x = -1 \) or \( x = 0 \)
4. **Equation (9)**: \( x = 2 \)
5. **Equation (11)**: \( x = 3 \)
Solución
Solve the equation by following steps:
- step0: Solve for \(x\):
\(3^{x+1}-2\times 3^{x-1}=21\)
- step1: Subtract the terms:
\(7\times 3^{x-1}=21\)
- step2: Divide both sides:
\(\frac{7\times 3^{x-1}}{7}=\frac{21}{7}\)
- step3: Divide the numbers:
\(3^{x-1}=3\)
- step4: Set the exponents equal:
\(x-1=1\)
- step5: Move the constant to the right side:
\(x=1+1\)
- step6: Add the numbers:
\(x=2\)
Solve the equation \( 3^{2 x+1}-4 \cdot 3^{x}+1=0 \).
Solve the equation by following steps:
- step0: Solve for \(x\):
\(3^{2x+1}-4\times 3^{x}+1=0\)
- step1: Factor the expression:
\(\left(3^{x}-1\right)\left(3^{x+1}-1\right)=0\)
- step2: Separate into possible cases:
\(\begin{align}&3^{x}-1=0\\&3^{x+1}-1=0\end{align}\)
- step3: Solve the equation:
\(\begin{align}&x=0\\&x=-1\end{align}\)
- step4: Rewrite:
\(x_{1}=-1,x_{2}=0\)
Solve the equation \( 2^{x}-3 \cdot 2^{3-x}-5=0 \).
Solve the equation by following steps:
- step0: Solve for \(x\):
\(2^{x}-3\times 2^{3-x}-5=0\)
- step1: Factor the expression:
\(\left(2^{x}-8\right)\left(2^{x}+3\right)\left(2^{x}\right)^{-1}=0\)
- step2: Rewrite the expression:
\(\frac{2^{2x}-5\times 2^{x}-24}{2^{x}}=0\)
- step3: Cross multiply:
\(2^{2x}-5\times 2^{x}-24=2^{x}\times 0\)
- step4: Simplify the equation:
\(2^{2x}-5\times 2^{x}-24=0\)
- step5: Factor the expression:
\(\left(2^{x}-8\right)\left(2^{x}+3\right)=0\)
- step6: Separate into possible cases:
\(\begin{align}&2^{x}-8=0\\&2^{x}+3=0\end{align}\)
- step7: Solve the equation:
\(\begin{align}&x=3\\&x \notin \mathbb{R}\end{align}\)
- step8: Find the union:
\(x=3\)
Solve the equation \( 3^{2 x}-4 \cdot 3^{x}+3=0 \).
Solve the equation by following steps:
- step0: Solve for \(x\):
\(3^{2x}-4\times 3^{x}+3=0\)
- step1: Factor the expression:
\(\left(3^{x}-3\right)\left(3^{x}-1\right)=0\)
- step2: Separate into possible cases:
\(\begin{align}&3^{x}-3=0\\&3^{x}-1=0\end{align}\)
- step3: Solve the equation:
\(\begin{align}&x=1\\&x=0\end{align}\)
- step4: Rewrite:
\(x_{1}=0,x_{2}=1\)
Solve the equation \( 3^{x}-4=\frac{45}{3^{x}} \).
Solve the equation by following steps:
- step0: Solve for \(x\):
\(3^{x}-4=\frac{45}{3^{x}}\)
- step1: Divide the terms:
\(3^{x}-4=5\times 3^{2-x}\)
- step2: Move the expression to the left side:
\(3^{x}-4-5\times 3^{2-x}=0\)
- step3: Factor the expression:
\(\left(3^{x}-9\right)\left(3^{x}+5\right)\left(3^{x}\right)^{-1}=0\)
- step4: Rewrite the expression:
\(\frac{3^{2x}-4\times 3^{x}-45}{3^{x}}=0\)
- step5: Cross multiply:
\(3^{2x}-4\times 3^{x}-45=3^{x}\times 0\)
- step6: Simplify the equation:
\(3^{2x}-4\times 3^{x}-45=0\)
- step7: Factor the expression:
\(\left(3^{x}-9\right)\left(3^{x}+5\right)=0\)
- step8: Separate into possible cases:
\(\begin{align}&3^{x}-9=0\\&3^{x}+5=0\end{align}\)
- step9: Solve the equation:
\(\begin{align}&x=2\\&x \notin \mathbb{R}\end{align}\)
- step10: Find the union:
\(x=2\)
Here are the solutions for each of the equations provided:
1. **Equation (3)**: \( 3^{x+1}-2 \cdot 3^{x-1}=21 \)
- **Solution**: \( x = 2 \)
2. **Equation (5)**: \( 3^{2 x}-4 \cdot 3^{x}+3=0 \)
- **Solutions**: \( x_{1} = 0 \), \( x_{2} = 1 \)
3. **Equation (7)**: \( 3^{2 x+1}-4 \cdot 3^{x}+1=0 \)
- **Solutions**: \( x_{1} = -1 \), \( x_{2} = 0 \)
4. **Equation (9)**: \( 3^{x}-4=\frac{45}{3^{x}} \)
- **Solution**: \( x = 2 \)
5. **Equation (11)**: \( 2^{x}-3 \cdot 2^{3-x}-5=0 \)
- **Solution**: \( x = 3 \)
If you need further explanations or steps for any of these solutions, feel free to ask!
Respondido por UpStudy AI y revisado por un tutor profesional

Explicar

Simplifique esta solución