Werse of \( y=a x^{-2} \) Given the function \( f(x)=x^{2} \) 5.1 Determine \( f^{-1}(x) \). 5.2 Draw the graph of \( f^{-1}(x) \). 5.3 Explain why \( f^{-1}(x) \) will not be a function? 5.4 Explain how you will restrict the domain of \( f(x) \) to ensure that \( f^{-1}(x) \) wil be a function.
Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional
![](/pmw/light_bulb.png?etag=525fd69ac661e11754e2fc9f1b18a4ee)
![](/pmw/spiral_notepad.png?etag=abe3906b7558c543a7b30ba53a3b5a5b)
Extra Insights
To find the inverse function, \( f(x) = x^{2} \), we switch x and y and solve for y: 1. Start with \( x = y^2 \). 2. Rearranging gives \( y = \sqrt{x} \) or \( y = -\sqrt{x} \). Both \( \sqrt{x} \) and \( -\sqrt{x} \) would typically be solutions, but that leads us to the conclusion for 5.3! The function \( f^{-1}(x) \) will not be a function because it would fail the vertical line test; for every positive \( x \), there are two corresponding \( y \) values: one positive (the square root) and one negative (the negative square root). To ensure that \( f^{-1}(x) \) is a function (5.4), you can restrict the domain of \( f(x) \) to non-negative numbers, i.e., \( x \geq 0 \). This way, the inverse \( f^{-1}(x) = \sqrt{x} \) becomes a single valued function, allowing you to express it clearly and maintain the property of being a function!
![](/pmw/img-try-permium.webp)