Pregunta
upstudy study bank question image url

Multiple Choice 1 point Do not integrate, but state which method(s) can be used to evaluate the integral: \( \int(x+1) /\left(x^{2}+2 x-8\right) d x \) I. Substitution where \( u=x^{2}+2 x-8 \) II. Partial fractions II. Trig substitution I and II only I only III only II only

Ask by Pope Nunez. in the United States
Feb 26,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The correct methods to evaluate the integral are substitution and partial fractions.

Solución

To evaluate the integral \[ \int \frac{x+1}{x^{2}+2x-8} \, dx, \] let's analyze the methods listed: 1. **Substitution where \( u = x^{2} + 2x - 8 \)**: This method is applicable because we can differentiate \( u \) to find \( du \) and express \( dx \) in terms of \( du \). The integral can be transformed into a simpler form using this substitution. 2. **Partial fractions**: This method can also be used here. The denominator \( x^{2} + 2x - 8 \) can be factored, and then the integrand can be expressed as a sum of simpler fractions, which can be integrated separately. 3. **Trig substitution**: This method is generally used for integrals involving square roots or specific forms that can be transformed into trigonometric identities. In this case, it does not apply since the integral does not have a suitable form for trigonometric substitution. Based on this analysis, the applicable methods are: - I. Substitution where \( u = x^{2} + 2x - 8 \) - II. Partial fractions Thus, the correct answer is: **I and II only**.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

The Deep Dive

For evaluating the integral \( \int \frac{x+1}{x^{2}+2x-8} \, dx \), you can definitely use substitution and partial fractions to break down the function and simplify the integration process. Now, concerning the method of trigonometric substitution, it might not be applicable here since the integrand does not fit the typical scenarios that warrant a trig substitution approach, especially with the absence of square roots or specific expressions suitable for that technique. So, the viable options for this integral would be option "I and II only."

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad