Pregunta
upstudy study bank question image url

1. Sketch the graph of \( y=4^{x} \) and the inverse on the same system of axis Given: \( f(x)=5^{\mathrm{x}} \) a) Write down the equation of the inverse of \( f(x) \). b) Sketch \( f \) and \( f^{-1} \) on the same system of axes. c) Write down the equation of the horizontal asymptote of \( f \). d) Write down the equation of the vertical asymptote of \( f-1 \). e) Give the domain \( f \). f) Give the domain of \( f^{-1} \).

Ask by Malone Todd. in South Africa
Feb 19,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

a) The inverse of \( f(x) = 5^x \) is \( f^{-1}(x) = \log_5(x) \). b) The graphs of \( f(x) = 5^x \) and \( f^{-1}(x) = \log_5(x) \) are reflections of each other across the line \( y = x \). c) The horizontal asymptote of \( f(x) = 5^x \) is \( y = 0 \). d) The vertical asymptote of \( f^{-1}(x) = \log_5(x) \) is \( x = 0 \). e) The domain of \( f(x) = 5^x \) is all real numbers: \( (-\infty, \infty) \). f) The domain of \( f^{-1}(x) = \log_5(x) \) is \( x > 0 \): \( (0, \infty) \).

Solución

Let's solve the problem step by step. ### Step 1: Sketch the graph of \( y = 4^x \) and its inverse The function \( y = 4^x \) is an exponential function that increases rapidly as \( x \) increases. Its inverse can be found by switching \( x \) and \( y \) and solving for \( y \). ### Step 2: Find the inverse of \( f(x) = 5^x \) To find the inverse, we set \( y = 5^x \) and switch \( x \) and \( y \): 1. Start with \( x = 5^y \). 2. Take the logarithm of both sides: \( \log_5(x) = y \). Thus, the inverse function is: \[ f^{-1}(x) = \log_5(x) \] ### Step 3: Sketch \( f \) and \( f^{-1} \) The graph of \( f(x) = 5^x \) is an increasing curve that approaches the x-axis (horizontal asymptote) as \( x \) approaches negative infinity. The graph of \( f^{-1}(x) = \log_5(x) \) is an increasing curve that approaches the y-axis (vertical asymptote) as \( x \) approaches zero. ### Step 4: Write down the equations of the asymptotes **c)** The horizontal asymptote of \( f(x) = 5^x \) is: \[ y = 0 \] **d)** The vertical asymptote of \( f^{-1}(x) = \log_5(x) \) is: \[ x = 0 \] ### Step 5: Determine the domains **e)** The domain of \( f(x) = 5^x \) is all real numbers: \[ \text{Domain of } f: (-\infty, \infty) \] **f)** The domain of \( f^{-1}(x) = \log_5(x) \) is \( x > 0 \): \[ \text{Domain of } f^{-1}: (0, \infty) \] ### Summary of Results - **Inverse of \( f(x) \)**: \( f^{-1}(x) = \log_5(x) \) - **Horizontal Asymptote of \( f \)**: \( y = 0 \) - **Vertical Asymptote of \( f^{-1} \)**: \( x = 0 \) - **Domain of \( f \)**: \( (-\infty, \infty) \) - **Domain of \( f^{-1} \)**: \( (0, \infty) \) ### Graph Sketch To sketch the graphs of \( f(x) = 5^x \) and \( f^{-1}(x) = \log_5(x) \): 1. **Graph of \( f(x) = 5^x \)**: - Passes through (0, 1) since \( 5^0 = 1 \). - Approaches the x-axis as \( x \) goes to negative infinity. 2. **Graph of \( f^{-1}(x) = \log_5(x) \)**: - Passes through (1, 0) since \( \log_5(1) = 0 \). - Approaches the y-axis as \( x \) goes to 0. Both graphs are reflections of each other across the line \( y = x \). If you need a visual representation, please let me know!

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Extra Insights

Let's tackle this step by step! 1. To find the inverse of \( f(x) = 5^x \), we set \( y = 5^x \) and solve for \( x \). Taking the logarithm gives us \( x = \log_5(y) \), so the inverse is \( f^{-1}(y) = \log_5(y) \). 2. To sketch \( f(x) = 5^x \) and its inverse \( f^{-1}(x) = \log_5(x) \), first note that the exponential function will rise steeply to the right, starting from just above zero at \( x=0 \) and never touching the x-axis (horizontal asymptote at \( y = 0 \)). The logarithmic function will pass through the point (1,0) and rise gradually, never touching the y-axis (vertical asymptote at \( x = 0 \)). Their graphs will be reflections of each other across the line \( y=x \). 3. The horizontal asymptote of \( f(x) = 5^x \) is \( y = 0 \), as \( x \to -\infty \). 4. The vertical asymptote of \( f^{-1}(x) = \log_5(x) \) occurs at \( x = 0 \) because the logarithmic function is undefined for non-positive values. 5. The domain of \( f(x) \) is \( (-\infty, \infty) \) since \( 5^x \) is defined for all real numbers. 6. The domain of \( f^{-1}(x) \) is \( (0, \infty) \) because the logarithmic function only accepts positive inputs. Now for some additional nuggets of knowledge! Exponential functions like \( f(x) = 5^x \) are important in many areas, including finance and biology! They model growth processes, such as interest accumulation or population growth, where quantities increase multiplicatively. You'll find them everywhere, from compound interest formulas to population studies—it's like nature's little cheat sheet for expansion! When sketching these functions, it's essential to remember the properties of inverses. The point (1,0) is critical for both functions, where \( f(0) = 1 \) and \( f^{-1}(1) = 0 \). Always keep in mind that the graph of a function and its inverse are intertwined like two dance partners, elegantly flipping across the line \( y = x \), showcasing how they mirror each other's behavior beautifully!

preguntas relacionadas

Latest Pre Calculus Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad