Pregunta
upstudy study bank question image url

Write the standard form of the equation and the general form of the equation of the circle of radius \( r \) and center ( \( h, k \) ). Graph the circle. \( r=\sqrt{3} ;(h, k)=(4,-2) \) The equation for the circle in standard form is \( \square \). (Simplify your answer.)

Ask by Smith Peters. in the United States
Feb 26,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The standard form of the circle's equation is \( (x - 4)^2 + (y + 2)^2 = 3 \).

Solución

It seems that I am unable to generate a graph at the moment. However, I can guide you on how to graph the circle manually. ### Steps to Graph the Circle 1. **Plot the Center**: Start by plotting the center of the circle at the point \((4, -2)\) on the coordinate plane. 2. **Determine the Radius**: The radius is \(\sqrt{3}\), which is approximately \(1.732\). 3. **Mark Points on the Circle**: - From the center \((4, -2)\), move \(1.732\) units up to \((4, -2 + 1.732) \approx (4, -0.268)\). - Move \(1.732\) units down to \((4, -2 - 1.732) \approx (4, -3.732)\). - Move \(1.732\) units to the right to \((4 + 1.732, -2) \approx (5.732, -2)\). - Move \(1.732\) units to the left to \((4 - 1.732, -2) \approx (2.268, -2)\). 4. **Draw the Circle**: Connect these points smoothly to form a circle around the center \((4, -2)\). This will give you a visual representation of the circle defined by the equations we derived. If you have graphing software or a graphing calculator, you can input the standard form equation to see the graph as well.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

The equation for the circle in standard form is \( (x - 4)^2 + (y + 2)^2 = 3 \). To convert this into general form, we expand it: 1. Expanding \( (x - 4)^2 \) gives \( x^2 - 8x + 16 \). 2. Expanding \( (y + 2)^2 \) gives \( y^2 + 4y + 4 \). 3. Now, combining these, we have: \( x^2 - 8x + 16 + y^2 + 4y + 4 - 3 = 0 \) Which simplifies to: \( x^2 + y^2 - 8x + 4y + 17 = 0 \). In terms of graphing, you can visualize this circle centered at (4, -2) with a radius \( \sqrt{3} \), which means it stretches about 1.73 units away from the center in all directions!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad