Pregunta
upstudy study bank question image url

Question Write the equation of the line tangent to the graph of \( r=2 \cos \theta \) when \( \theta=\frac{7 \pi}{6} \). Answer Attempt 1 out of 2 \( \sqrt{ } \)

Ask by Williams Pritchard. in the United States
Mar 09,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The equation of the tangent line to the graph of \( r = 2\cos\theta \) at \( \theta = \frac{7\pi}{6} \) is: \[ y - \frac{\sqrt{3}}{2} = -\frac{1}{\sqrt{3}}\left(x - \frac{3}{2}\right) \]

Solución

We begin with the polar curve \[ r = 2\cos\theta. \] At \(\theta = \frac{7\pi}{6}\), the radius is \[ r = 2\cos\frac{7\pi}{6} = 2\left(-\frac{\sqrt{3}}{2}\right) = -\sqrt{3}. \] Even though \(r\) is negative, the corresponding Cartesian coordinates are found using \[ x = r\cos\theta \quad \text{and} \quad y = r\sin\theta. \] At \(\theta = \frac{7\pi}{6}\), note that \[ \cos\frac{7\pi}{6} = -\frac{\sqrt{3}}{2}, \quad \sin\frac{7\pi}{6} = -\frac{1}{2}. \] Thus, \[ x = (-\sqrt{3})\left(-\frac{\sqrt{3}}{2}\right) = \frac{3}{2}, \quad y = (-\sqrt{3})\left(-\frac{1}{2}\right) = \frac{\sqrt{3}}{2}. \] Next, we compute the slope of the tangent line. Recall that for a polar curve \(r=f(\theta)\) the derivative \(\frac{dy}{dx}\) is given by \[ \frac{dy}{dx} = \frac{\frac{dr}{d\theta}\sin\theta + r\cos\theta}{\frac{dr}{d\theta}\cos\theta - r\sin\theta}. \] Since \(r = 2\cos\theta\), we differentiate with respect to \(\theta\): \[ \frac{dr}{d\theta} = -2\sin\theta. \] At \(\theta = \frac{7\pi}{6}\): \[ \sin\frac{7\pi}{6} = -\frac{1}{2} \quad \text{and} \quad \cos\frac{7\pi}{6} = -\frac{\sqrt{3}}{2}, \] so that \[ \frac{dr}{d\theta} = -2\left(-\frac{1}{2}\right) = 1. \] Now substitute into the derivative formula: \[ \frac{dy}{dx} = \frac{(1)\left(-\frac{1}{2}\right) + \left(-\sqrt{3}\right)\left(-\frac{\sqrt{3}}{2}\right)}{(1)\left(-\frac{\sqrt{3}}{2}\right) - \left(-\sqrt{3}\right)\left(-\frac{1}{2}\right)}. \] Simplify the numerator: \[ (1)\left(-\frac{1}{2}\right) + \left(-\sqrt{3}\right)\left(-\frac{\sqrt{3}}{2}\right) = -\frac{1}{2} + \frac{3}{2} = \frac{2}{2} = 1. \] And the denominator: \[ \left(-\frac{\sqrt{3}}{2}\right) - \left(\sqrt{3}\cdot\frac{1}{2}\right) = -\frac{\sqrt{3}}{2} - \frac{\sqrt{3}}{2} = -\sqrt{3}. \] Thus, the slope is \[ m = \frac{dy}{dx} = \frac{1}{-\sqrt{3}} = -\frac{1}{\sqrt{3}}. \] We now have the point \(\left(\frac{3}{2}, \frac{\sqrt{3}}{2}\right)\) and slope \(m = -\frac{1}{\sqrt{3}}\). The point-slope form of the tangent line is \[ y - \frac{\sqrt{3}}{2} = -\frac{1}{\sqrt{3}}\left(x - \frac{3}{2}\right). \] This is the equation of the tangent line in point-slope form. For an alternative form, we simplify further. Distribute the right-hand side: \[ y - \frac{\sqrt{3}}{2} = -\frac{1}{\sqrt{3}}x + \frac{3}{2\sqrt{3}}. \] Adding \(\frac{\sqrt{3}}{2}\) to both sides gives \[ y = -\frac{1}{\sqrt{3}}x + \frac{3}{2\sqrt{3}} + \frac{\sqrt{3}}{2}. \] Recognize that \[ \frac{\sqrt{3}}{2} = \frac{3}{2\sqrt{3}}, \] so \[ \frac{3}{2\sqrt{3}} + \frac{3}{2\sqrt{3}} = \frac{6}{2\sqrt{3}} = \frac{3}{\sqrt{3}}. \] Thus, the line becomes \[ y = -\frac{1}{\sqrt{3}}x + \frac{3}{\sqrt{3}}. \] Multiplying both sides by \(\sqrt{3}\) to eliminate the radical in the denominator yields \[ \sqrt{3}y = -x + 3, \] which can be rearranged to \[ x + \sqrt{3}y - 3 = 0. \] This is the equation of the tangent line in standard form. The final answer is: \[ y - \frac{\sqrt{3}}{2} = -\frac{1}{\sqrt{3}}\left(x - \frac{3}{2}\right). \]

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Mind Expander

To find the tangent line to the polar curve \( r = 2 \cos \theta \) at \( \theta = \frac{7\pi}{6} \), begin by evaluating \( r \) at that angle. For \( \theta = \frac{7\pi}{6} \), \( r = 2 \cos\left(\frac{7\pi}{6}\right) \) results in \( r = -\sqrt{3} \). Next, convert polar coordinates to Cartesian coordinates using \( x = r \cos \theta \) and \( y = r \sin \theta \). This gives the point \( (x, y) = \left(-\sqrt{3} \cos\left(\frac{7\pi}{6}\right), -\sqrt{3} \sin\left(\frac{7\pi}{6}\right)\right) \). To find the slope of the tangent line, use the polar derivative formula \( \frac{dy}{dx} = \frac{\frac{dr}{d\theta} \sin \theta + r \cos \theta}{\frac{dr}{d\theta} \cos \theta - r \sin \theta} \). After computing \( \frac{dr}{d\theta} \) for \( r = 2 \cos \theta \), plug in \( \theta = \frac{7\pi}{6} \) to get the slope. Finally, use the point-slope form \( y - y_0 = m(x - x_0) \) to write the equation of the line. The equation of the tangent line is \( y = \sqrt{3}x + 3\sqrt{3} \). Let's get tangent! If you loved exploring tangent lines in polar coordinates, you might be intrigued by converting polar equations to Cartesian ones! It's like unlocking a new dimension of understanding graph functions. There are some nifty strategies for recognizing the shapes and intercepts when transforming equations—try it out and see how each form tells a bit of a different story about the graph! Additionally, think about how polar coordinates are used in fields like navigation and robotics. They allow for efficient positioning and movement along curves or circular paths that linear coordinates sometimes struggle with. Understanding the tangent lines in polar can help design smoother paths for robotic arms or even drones—who knew math could lead to flying robots?

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad