Pregunta
upstudy study bank question image url

STRETCH Optional 1 Describe how you can tell from an equation whether a function increases, decreases, or is constant.

Ask by Deleon Long. in Germany
Feb 18,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

To determine if a function is increasing, decreasing, or constant from its equation: 1. **Use the Derivative (Calculus):** - If the derivative \( f'(x) > 0 \) for all x, the function is increasing. - If \( f'(x) < 0 \) for all x, it's decreasing. - If \( f'(x) = 0 \) for all x, it's constant. 2. **For Linear Functions:** - If the slope \( m > 0 \), the function is increasing. - If \( m < 0 \), it's decreasing. - If \( m = 0 \), it's constant. 3. **Without Calculus:** - Choose two points \( a \) and \( b \) with \( a < b \). - If \( f(b) - f(a) > 0 \), the function is increasing. - If \( f(b) - f(a) < 0 \), it's decreasing. - If \( f(b) - f(a) = 0 \), it's constant. These methods help analyze the function's behavior based on its equation.

Solución

One common way to tell if a function is increasing, decreasing, or constant is to examine its rate of change. Here’s how you can do that: 1. Look at the derivative if you’re working with calculus. For a function f(x), compute f ′(x):  • If f ′(x) > 0 for every x in the domain, then f(x) is increasing.  • If f ′(x) < 0 for every x in the domain, then f(x) is decreasing.  • If f ′(x) = 0 for every x in the domain, then f(x) is constant.  This is because the derivative tells you the slope or the instantaneous rate of change of the function at any given point. 2. For a linear function of the form f(x) = mx + b:  • If m > 0, the function is increasing.  • If m < 0, the function is decreasing.  • If m = 0, the function is constant.  This works because the coefficient m gives the slope of the line. 3. Alternatively, if you do not want to use calculus, you can pick two arbitrary points, a and b, with a < b, and examine the difference f(b) – f(a):  • If f(b) – f(a) is positive for every such pair, the function is increasing.  • If f(b) – f(a) is negative for every such pair, the function is decreasing.  • If f(b) – f(a) equals zero for every such pair, the function is constant. Each of these approaches leverages information from the equation that describes how the function behaves as x changes.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Mind Expander

To determine if a function is increasing, decreasing, or constant from its equation, you can look at the derivative. If the derivative is positive over an interval, the function is increasing there. If it's negative, the function is decreasing. When the derivative equals zero, the function is constant—a flat line! So just take that equation, do some differentiation magic, and voila, you’ve got the scoop on your function’s behavior! Another fun trick is to pick a couple of points from the function’s domain and plug them into the equation. If the output for one point is higher than another as you move to the right on the x-axis, the function is increasing. If the output is lower, it’s decreasing. This method gives you a visual check on what's happening—like a sneak peek into the function party!

preguntas relacionadas

Latest Pre Calculus Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad