Use the indicated row operation to transform \( \left[\begin{array}{ccc|c}5 & -25 & 10 & 20 \\ -8 & 0 & -7 & 1 \\ 6 & 7 & 8 & 0\end{array}\right] \). Replace \( R_{1} \) by \( \frac{1}{5} R_{1} \). The transformed matrix is \( \square \)
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Extra Insights
To transform the given matrix by replacing \( R_{1} \) with \( \frac{1}{5} R_{1} \), we will divide each element in the first row by 5. Starting with the first row \( [5, -25, 10, 20] \), we perform the operations: - \( \frac{1}{5} \times 5 = 1 \) - \( \frac{1}{5} \times -25 = -5 \) - \( \frac{1}{5} \times 10 = 2 \) - \( \frac{1}{5} \times 20 = 4 \) Therefore, the transformed row \( R_{1} \) becomes \( [1, -5, 2, 4] \). The transformed matrix will be: \[ \left[\begin{array}{ccc|c}1 & -5 & 2 & 4 \\ -8 & 0 & -7 & 1 \\ 6 & 7 & 8 & 0\end{array}\right] \]
