\[ f(x) = 3x + 4 \quad g(x) = 2x - 3 \] \[ \text{Find: } f \circ g(x) \]
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Mind Expander
To find \( f \circ g(x) \), we need to substitute the function \( g(x) \) into \( f(x) \). First, we have \( g(x) = 2x - 3 \). Now, we replace \( x \) in \( f(x) = 3x + 4 \) with \( g(x) \): \[ f \circ g(x) = f(g(x)) = f(2x - 3) \] Now, substitute \( 2x - 3 \) into \( f(x) \): \[ f(2x - 3) = 3(2x - 3) + 4 \] Now, distribute the 3: \[ = 6x - 9 + 4 \] Combine the constants: \[ = 6x - 5 \] Thus, the composition \( f \circ g(x) = 6x - 5 \).
