Factor. \[ 6 x^{2}+13 x+5 \] Select the correct choice below and, if necessary, fill in the answer box within your choice. A. \( 6 x^{2}+13 x+5=\square \). (Factor completely.) B. The trinomial is not factorable.
Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


Mind Expander
To factor the quadratic \( 6x^2 + 13x + 5 \), we look for two numbers that multiply to the product of the leading coefficient and the constant term (6 * 5 = 30) and add up to the middle coefficient (13). These numbers are 10 and 3. This allows us to rewrite the middle term: \[ 6x^2 + 10x + 3x + 5. \] Next, we group the terms: \[ (6x^2 + 10x) + (3x + 5). \] Factoring out common factors gives us: \[ 2x(3x + 5) + 1(3x + 5). \] Now, factoring out \( (3x + 5) \): \[ (3x + 5)(2x + 1). \] Thus, the complete factorization is: \[ 6x^2 + 13x + 5 = (3x + 5)(2x + 1). \]
