Simpify \( \frac{\sqrt{3}-3 \sqrt{2}}{2 \sqrt{3}-2 \sqrt{2}} \)
Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


The Deep Dive
To simplify the expression \( \frac{\sqrt{3}-3 \sqrt{2}}{2 \sqrt{3}-2 \sqrt{2}} \), we can factor out the common factor in the denominator. First, notice that we can factor the denominator: \[ 2 \sqrt{3} - 2 \sqrt{2} = 2(\sqrt{3} - \sqrt{2}). \] Now, our expression becomes: \[ \frac{\sqrt{3} - 3\sqrt{2}}{2(\sqrt{3} - \sqrt{2})}. \] Next, we can see that the numerator \(\sqrt{3} - 3\sqrt{2}\) does not have a common factor with \(\sqrt{3} - \sqrt{2}\). Therefore, we cannot cancel anything out directly. However, we can analyze the fraction further: \[ \frac{1}{2} \cdot \frac{\sqrt{3} - 3\sqrt{2}}{\sqrt{3} - \sqrt{2}}. \] Now we stop here; the expression cannot be simplified further unless we continue with rationalizing or numerical approximations. Thus, the simplified form is: \[ \frac{\sqrt{3}-3\sqrt{2}}{2(\sqrt{3}-\sqrt{2})}. \]
