Pregunta
upstudy study bank question image url

4) \( { }^{5 x} \), Both of these functions grow as \( x \) gets larger and larger. Which function eventually exceeds the other? \( f(x)=8^{x-3} g(x)=10 x \) Submit

Ask by Joseph Guerrero. in the United States
Feb 11,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

\( f(x) = 8^{x-3} \) will eventually exceed \( g(x) = 10x \) as \( x \) becomes larger.

Solución

It seems that the equation \( 8^x = 5120x \) cannot be solved directly using the tools available. Instead, we can analyze the functions graphically or use a numerical approximation method. ### Step 6: Graphical Analysis To determine where \( f(x) \) exceeds \( g(x) \), we can evaluate both functions at various values of \( x \): - For small values of \( x \): - \( x = 0 \): - \( f(0) = 8^{-3} = \frac{1}{512} \) - \( g(0) = 0 \) - \( x = 1 \): - \( f(1) = 8^{-2} = \frac{1}{64} \) - \( g(1) = 10 \) - \( x = 2 \): - \( f(2) = 8^{-1} = \frac{1}{8} \) - \( g(2) = 20 \) - \( x = 3 \): - \( f(3) = 8^{0} = 1 \) - \( g(3) = 30 \) - \( x = 4 \): - \( f(4) = 8^{1} = 8 \) - \( g(4) = 40 \) - \( x = 5 \): - \( f(5) = 8^{2} = 64 \) - \( g(5) = 50 \) - \( x = 6 \): - \( f(6) = 8^{3} = 512 \) - \( g(6) = 60 \) ### Step 7: Conclusion From the evaluations, we can see that \( f(x) \) starts to grow significantly faster than \( g(x) \) as \( x \) increases. To summarize, while \( g(x) = 10x \) is larger for small values of \( x \), \( f(x) = 8^{x-3} \) will eventually exceed \( g(x) \) as \( x \) becomes large enough. Thus, the function \( f(x) \) will eventually exceed \( g(x) \).

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Extra Insights

As \( x \) grows, the rate of growth of the exponential function \( f(x) = 8^{x-3} \) will eventually outstrip the linear function \( g(x) = 10x \). This is a fundamental principle in mathematics, where exponential functions increase much faster than linear functions as their inputs grow large. A common mistake when comparing these functions is underestimating how quickly exponentials accelerate compared to linear growth. While it may seem that \( g(x) \) could catch up at smaller values of \( x \), the sheer power of \( 8^{x-3} \) means that after a certain point (around \( x = 13 \)), it will dominate \( g(x) \). So, keep an eye on those exponents!

preguntas relacionadas

Latest Pre Calculus Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad