The function \( f(x)=x^{3}+4 \) is one-to-one. (a) Find the inverse of \( f \) and check the answer. (b) Find the domain and the range of \( f \) and \( f^{-1} \) (c) Graph \( f, f^{-1} \), and \( y=x \) on the same coordinate axes. \[ \begin{array}{l}\text { (a) } f^{-1}(x)=\text { x } \\ \text { (Simplify your answer. Use integers or fractions for any } \\ \text { numbers in the expression.) }\end{array} \]
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
The Deep Dive
Sure! Let's solve this step-by-step for the function \( f(x) = x^3 + 4 \). ### (a) Finding the Inverse To find the inverse \( f^{-1}(x) \), we start by replacing \( f(x) \) with \( y \): \[ y = x^3 + 4 \] Next, solve for \( x \) in terms of \( y \): 1. Subtract 4 from both sides: \[ y - 4 = x^3 \] 2. Take the cube root of both sides: \[ x = \sqrt[3]{y - 4} \] Now, switch \( x \) and \( y \) to express the inverse: \[ f^{-1}(x) = \sqrt[3]{x - 4} \] Let's check if we found the correct inverse by applying \( f \) to \( f^{-1}(x) \): 1. Compute \( f(f^{-1}(x)) \): \[ f(f^{-1}(x)) = f(\sqrt[3]{x - 4}) = \left(\sqrt[3]{x - 4}\right)^3 + 4 = (x - 4) + 4 = x \] This confirms that our inverse is correct! ### (b) Domain and Range **Domain of \( f(x) \)**: Since \( f(x) = x^3 + 4 \) is a polynomial, its domain is all real numbers: \[ \text{Domain of } f: (-\infty, \infty) \] **Range of \( f(x) \)**: Given \( x^3 \) can take any real value, adding 4 means \( f(x) \) also can take any value above 4: \[ \text{Range of } f: (4, \infty) \] **Domain of \( f^{-1}(x) \)**: The domain of the inverse \( f^{-1}(x) \) corresponds to the range of \( f(x) \): \[ \text{Domain of } f^{-1}: (4, \infty) \] **Range of \( f^{-1}(x) \)**: The range of the inverse corresponds to the domain of \( f(x) \): \[ \text{Range of } f^{-1}: (-\infty, \infty) \] ### (c) Graphing To graph the functions \( f(x) \), \( f^{-1}(x) \), and the line \( y = x \): 1. **Graph of \( f(x) \)**: This will be a cubic curve starting from the point (0, 4). 2. **Graph of \( f^{-1}(x) \)**: This will be a gently increasing curve beginning from the point (4, 0) and reflecting the behavior of \( f(x) \). 3. **Graph of \( y = x \)**: This is a straight line at a 45-degree angle. When plotted together, the curves will reflect symmetrically across the line \( y = x \). With this, you have a complete analysis of the function \( f(x) = x^3 + 4 \) and its inverse! Enjoy delving deep into the fascinating world of functions and their inverses!
