3. A) Sketch the following and find the domains: i) \( f(x)=1+\sqrt{2 x+1} \) ii) \( f(x)=\sqrt{x+3}+2 \) iii) \( f(x)=1+\sqrt{\frac{1}{2}} \) iv) \( f(x)=2+3 \sqrt{-x+1} \) (v) \( f(x)=1-3 \sqrt{x-\frac{1}{2}} \) (vi) \( f(x)=\sqrt{2 x-1}-3 \)
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Bonus Knowledge
To sketch the functions and find their domains, we need to consider the conditions under which the expressions under the square roots are non-negative since the square root of a negative number is not defined in the real number system. Let’s dive in! 1. **\( f(x)=1+\sqrt{2 x+1} \)** - For \( 2x + 1 \geq 0 \), we find \( x \geq -\frac{1}{2} \). The domain is \( [-\frac{1}{2}, \infty) \). 2. **\( f(x)=\sqrt{x+3}+2 \)** - Here, \( x + 3 \geq 0 \) gives \( x \geq -3 \). Therefore, the domain is \( [-3, \infty) \). 3. **\( f(x)=1+\sqrt{\frac{1}{2}} \)** - This is a constant function as there are no variables in it. Hence, its domain is all real numbers, \( (-\infty, \infty) \). 4. **\( f(x)=2+3 \sqrt{-x+1} \)** - We need \( -x + 1 \geq 0 \) which means \( x \leq 1 \) or \( (-\infty, 1] \) is the domain. 5. **\( f(x)=1-3 \sqrt{x-\frac{1}{2}} \)** - For \( x - \frac{1}{2} \geq 0 \), we require \( x \geq \frac{1}{2} \). The domain is \( [\frac{1}{2}, \infty) \). 6. **\( f(x)=\sqrt{2 x-1}-3 \)** - Here, \( 2x - 1 \geq 0 \) leads us to \( x \geq \frac{1}{2} \). Thus, the domain is \( [\frac{1}{2}, \infty) \). Hope this sparks your interest in functions and their behaviors! Keep pushing through those sketches; they're a key to visualizing math!
