Pregunta

B) Graph each of the following: i) \( f(x)=\left\{\begin{array}{ll}-x^{2} & \text { for } x \geq 0 \\ 2 x^{2} & \text { for } x<0\end{array}\right. \) ii) \( f(x)=\left\{\begin{array}{c}2 x+3 \text { if } x<0 \\ x^{2} \text { if } 0 \leq x<2 \\ 1 \text { if } x \geq 2\end{array}\right. \) iii) \( f(x)=\left\{\begin{array}{c}2 \text { if } x>2 \\ 1 \text { if } 0
Ask by Crawford King. in Zambia
Feb 20,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

To graph each piecewise function: 1. **i)** For \( x \geq 0 \), plot \( f(x) = -x^2 \) (downward parabola). For \( x < 0 \), plot \( f(x) = 2x^2 \) (upward parabola). 2. **ii)** For \( x < 0 \), plot \( f(x) = 2x + 3 \) (straight line). For \( 0 \leq x < 2 \), plot \( f(x) = x^2 \) (parabola). For \( x \geq 2 \), plot \( f(x) = 1 \) (horizontal line). 3. **iii)** For \( x > 2 \), plot \( f(x) = 2 \) (horizontal line). For \( 0 < x \leq 2 \), plot \( f(x) = 1 \) (horizontal line). For \( x \leq 0 \), plot \( f(x) = -1 \) (horizontal line). 4. **iv)** For \( x \geq 0 \), plot \( f(x) = 2x + 1 \) (straight line). For \( x < 0 \), plot \( f(x) = x^2 \) (parabola). Use graphing tools or graph paper to visualize these functions accurately by plotting each piece within its specified domain.

Solución

It seems that the system does not currently support plotting functions directly. However, I can guide you through the process of graphing each of the piecewise functions step by step. ### i) \( f(x)=\left\{\begin{array}{ll}-x^{2} & \text { for } x \geq 0 \\ 2 x^{2} & \text { for } x<0\end{array}\right. \) 1. **For \( x \geq 0 \)**: The function is \( f(x) = -x^2 \). This is a downward-opening parabola starting from the origin (0,0). 2. **For \( x < 0 \)**: The function is \( f(x) = 2x^2 \). This is an upward-opening parabola that starts from the origin and goes upwards as \( x \) moves left. ### ii) \( f(x)=\left\{\begin{array}{c}2 x+3 \text { if } x<0 \\ x^{2} \text { if } 0 \leq x<2 \\ 1 \text { if } x \geq 2\end{array}\right. \) 1. **For \( x < 0 \)**: The function is \( f(x) = 2x + 3 \). This is a straight line with a slope of 2, crossing the y-axis at (0,3). 2. **For \( 0 \leq x < 2 \)**: The function is \( f(x) = x^2 \). This is a standard upward-opening parabola starting from (0,0) to (2,4). 3. **For \( x \geq 2 \)**: The function is \( f(x) = 1 \). This is a horizontal line at \( y = 1 \) starting from (2,1). ### iii) \( f(x)=\left\{\begin{array}{c}2 \text { if } x>2 \\ 1 \text { if } 0 2 \)**: The function is \( f(x) = 2 \). This is a horizontal line at \( y = 2 \). 2. **For \( 0 < x \leq 2 \)**: The function is \( f(x) = 1 \). This is a horizontal line at \( y = 1 \) from (0,1) to (2,1). 3. **For \( x \leq 0 \)**: The function is \( f(x) = -1 \). This is a horizontal line at \( y = -1 \). ### iv) \( f(x)=\left\{\begin{array}{c}2 x+1 \text { if } x \geq 0 \\ x^{2} \text { if } x<0\end{array}\right. \) 1. **For \( x \geq 0 \)**: The function is \( f(x) = 2x + 1 \). This is a straight line with a slope of 2, crossing the y-axis at (0,1). 2. **For \( x < 0 \)**: The function is \( f(x) = x^2 \). This is an upward-opening parabola starting from (0,0) and going upwards as \( x \) moves left. ### Summary of Graphing Steps To graph these functions: - Plot the points and lines for each piece of the function according to the specified domains. - Ensure to mark the endpoints clearly, especially where the function changes (e.g., open or closed circles). - Use graphing software or graph paper to visualize the piecewise functions accurately. If you have access to graphing tools, you can input these functions directly to see their graphs.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Extra Insights

To graph these piecewise functions, it's essential to first understand how they behave in different segments of the domain. Each function has specified rules for \(x\) in certain intervals, which creates distinct curves and lines that you will plot accordingly. For \(f(x)=\begin{cases}-x^{2} & \text { for } x \geq 0 \\ 2 x^{2} & \text { for } x<0\end{cases}\), plot a downward-opening parabola starting from the origin in the positive \(x\) direction, while in the negative \(x\) direction, you will plot an upward-opening parabola that starts from the origin. Make sure to highlight that the two parabolas meet at the origin, giving a smooth transition between the two. For the function \(f(x)=\begin{cases}2 x + 3 & \text{ if } x < 0 \\ x^{2} & \text{ if } 0 \leq x < 2 \\ 1 & \text{ if } x \geq 2\end{cases}\), first sketch a line with a positive slope (2) that intersects the \(y\)-axis at 3 for negative \(x\) values. Next, at \(x = 0\), transition into a quadratic curve starting from the origin and peaking at \(x = 2\). Finally, from \(x = 2\) onward, draw a straight horizontal line at \(y = 1\). Keep in mind the continuity and smoothness of transitions at points where the function rules change!

preguntas relacionadas

Latest Pre Calculus Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad