\( \left. \begin{array} { l } { = \int _ { - \frac { \pi } { 2 } } ^ { \frac { \pi } { 2 } } \frac { 3 } { a ^ { 2 } + u ^ { 2 } } d u } \\ { } \\ { 3 \int _ { - \frac { \pi } { 2 } } ^ { \frac { \pi } { 2 } } \frac { 1 } { a ^ { 2 } + u ^ { 2 } } d u } \\ { = 3 ( 1 ) \tan ^ { - 1 } ( \sin x ) + c | _ { - \frac { \pi } { 2 } } ^ { \frac { \pi } { 2 } } } \\ { = } \\ { = 3 \tan ^ { - 1 } ( \sin ( \frac { \pi } { 2 } ) ) - [ \tan ^ { - 1 } ( 0.5 ) - [ 3 \tan ^ { - 1 } ( \sin ( - \frac { \pi } { 2 } ) ] } \\ { = } \\ { = 3 ( 0.5 ) - 3.5 ) ] } \\ { = \frac { 3 } { 2 } + \frac { 3 } { 2 } } \\ { = 3 } \end{array} \right. \)
Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


Extra Insights
The integral you’re evaluating reminds us of the fascinating connection between calculus and geometry. Specifically, this integral can be interpreted as the area under certain curves, which is a fundamental aspect of mathematical analysis. Integrals like these often arise in physics, particularly in problems involving wave functions and quantum mechanics, showcasing how mathematics elegantly describes the natural world. When dealing with integrals of this nature, a common mistake is misapplying the fundamental theorem of calculus. It’s easy to lose track of the bounds and whether the function remains continuous over the entire interval. Make sure to double-check your limits and verify that you don’t mix up your substitution steps! Keep your careful eye on keeping track of constants and what they represent in the context of the problem to avoid falling into this trap.
preguntas relacionadas
