Pregunta
upstudy study bank question image url

The function \( f(x)=\frac{-2}{x+2}+2 \) is given. 11 White down the equations of the asymptotes of the function \( f \) 12 Sheth the gaph of the function Show the intercepts with the ares and the asymptotet clearly. \( \begin{array}{l}\text { Give the eqpation of the line of symmetry of the function with a negative gradient. } \\ \text { (3) } \\ \text { (2) } \\ \text { [7] }\end{array} \)

Ask by Long Robbins. in South Africa
Feb 11,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The function \( f(x) = \frac{-2}{x+2} + 2 \) has a vertical asymptote at \( x = -2 \) and a horizontal asymptote at \( y = 2 \). The x-intercept is at \( x = 0 \), and the y-intercept is at \( y = 0 \). The graph of the function has a line of symmetry with a negative gradient.

Solución

We are given   f(x) = –2/(x + 2) + 2. In what follows we will find  1. The asymptotes,  2. The intercepts and a sketch of the graph, and  3. The equation of the “line of symmetry with a negative gradient.” ───────────────────────────── 1. Finding the Asymptotes a) Vertical Asymptote A vertical asymptote occurs where the function is undefined (and the limit is infinite). The only “trouble‐point” is where the denominator is zero:   x + 2 = 0  ⟹  x = –2. Thus, the vertical asymptote is:   x = –2. b) Horizontal Asymptote For rational functions when the degree of the numerator is less than the degree of the denominator, the horizontal asymptote is the constant term that is “left over” when x → ±∞. In our function   f(x) = –2/(x + 2) + 2,   limₓ→±∞ [ –2/(x+2) ] = 0, so   limₓ→±∞ f(x) = 0 + 2 = 2. Thus, the horizontal asymptote is:   y = 2. ───────────────────────────── 2. Finding the Intercepts and Sketching the Graph a) x-intercept Find the x-intercept by setting f(x) = 0:   –2/(x + 2) + 2 = 0. Rearrange to solve for x:   –2/(x+2) = –2  ⟹  Multiply both sides by (x + 2):   –2 = –2(x + 2)  ⟹  

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To identify the asymptotes of the function \( f(x)=\frac{-2}{x+2}+2 \), we observe that there is a vertical asymptote at \( x = -2 \) since the denominator becomes zero here. The horizontal asymptote can be determined by examining the behavior as \( x \) approaches infinity or negative infinity. As \( x \to \infty \) or \( x \to -\infty \), the term \( \frac{-2}{x+2} \) approaches zero, so the horizontal asymptote is at \( y = 2 \). Thus, the equations of the asymptotes are \( x = -2 \) and \( y = 2 \). Plotting the graph of \( f(x) \), you'll see that it curves around the vertical asymptote \( x = -2 \) and flattens out at the horizontal asymptote \( y = 2 \). The intercepts can be found by setting \( f(x) = 0 \): \( 0 = \frac{-2}{x+2} + 2 \), leading to \( x = -2 \) for the x-intercept, but this point is not valid as it coincides with the vertical asymptote. The y-intercept can be found by evaluating \( f(0) = \frac{-2}{2} + 2 = 1 \), yielding the point (0, 1). For the line of symmetry, since the function has a negative gradient and is asymptotic, a linear function such as \( y = -x + 1 \) could act as a line of symmetry, reflecting on the behavior of the function around the asymptotes. Consequently, it's crucial to understand geometric properties when dealing with rational functions.

preguntas relacionadas

Latest Pre Calculus Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad