Pregunta
upstudy study bank question image url

(b) \( \frac{\sin ^{3} x+\sin x \cdot \cos ^{2} x}{\cos x}=\tan x \) (d) \( 1-\frac{\cos ^{2} x}{1+\sin x}=\sin x \) (f) \( \frac{1}{(\cos x+1)(\cos x-1)}=\frac{-1}{\tan ^{2} x \cdot \cos ^{2} x} \) (h) \( \left(\tan y+\frac{1}{\tan y}\right)\left(1-\cos ^{2} y\right)=\tan y \)

Ask by Ray Savage. in South Africa
Dec 03,2024

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

Equations (b), (d), (f), and (h) are true.

Solución

Let's simplify and verify each of the given equations step by step. ### (b) \( \frac{\sin ^{3} x+\sin x \cdot \cos ^{2} x}{\cos x}=\tan x \) **Left Side:** \[ \frac{\sin^3 x + \sin x \cos^2 x}{\cos x} = \frac{\sin x (\sin^2 x + \cos^2 x)}{\cos x} \] Using the Pythagorean identity \( \sin^2 x + \cos^2 x = 1 \): \[ = \frac{\sin x \cdot 1}{\cos x} = \frac{\sin x}{\cos x} = \tan x \] **Conclusion:** The equation is true. --- ### (d) \( 1-\frac{\cos ^{2} x}{1+\sin x}=\sin x \) **Left Side:** \[ 1 - \frac{\cos^2 x}{1 + \sin x} \] Using the identity \( \cos^2 x = 1 - \sin^2 x \): \[ = 1 - \frac{1 - \sin^2 x}{1 + \sin x} = 1 - \frac{1}{1 + \sin x} + \frac{\sin^2 x}{1 + \sin x} \] Combining the terms: \[ = \frac{(1 + \sin x) - 1 + \sin^2 x}{1 + \sin x} = \frac{\sin x + \sin^2 x}{1 + \sin x} \] Factoring out \(\sin x\): \[ = \frac{\sin x(1 + \sin x)}{1 + \sin x} = \sin x \quad (\text{for } 1 + \sin x \neq 0) \] **Conclusion:** The equation is true. --- ### (f) \( \frac{1}{(\cos x+1)(\cos x-1)}=\frac{-1}{\tan ^{2} x \cdot \cos ^{2} x} \) **Left Side:** \[ \frac{1}{(\cos x + 1)(\cos x - 1)} = \frac{1}{\cos^2 x - 1} = \frac{1}{-\sin^2 x} = -\frac{1}{\sin^2 x} \] **Right Side:** \[ \frac{-1}{\tan^2 x \cdot \cos^2 x} = \frac{-1}{\frac{\sin^2 x}{\cos^2 x} \cdot \cos^2 x} = \frac{-1}{\sin^2 x} \] **Conclusion:** The equation is true. --- ### (h) \( \left(\tan y+\frac{1}{\tan y}\right)\left(1-\cos ^{2} y\right)=\tan y \) **Left Side:** \[ \left(\tan y + \frac{1}{\tan y}\right)(1 - \cos^2 y) = \left(\tan y + \frac{1}{\tan y}\right) \sin^2 y \] Using \( \tan y = \frac{\sin y}{\cos y} \): \[ = \left(\frac{\sin y}{\cos y} + \frac{\cos y}{\sin y}\right) \sin^2 y = \left(\frac{\sin^2 y + \cos^2 y}{\sin y \cos y}\right) \sin^2 y \] Using the identity \( \sin^2 y + \cos^2 y = 1 \): \[ = \frac{1}{\sin y \cos y} \sin^2 y = \frac{\sin^2 y}{\sin y \cos y} = \frac{\sin y}{\cos y} = \tan y \] **Conclusion:** The equation is true. --- ### Summary All equations (b), (d), (f), and (h) are verified to be true.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Mind Expander

Did you know that trigonometric identities have been used for centuries? Ancient Greeks, especially Hipparchus and Ptolemy, laid the groundwork for what we now explore in terms of sine, cosine, and tangent. Their observations on celestial bodies and angles led to the creation of tables that featured angles and their corresponding sine and cosine values, setting the stage for centuries of mathematicians to refine and expand on these ideas! When you're diving into trigonometric equations, it’s crucial to keep an eye out for common traps. One common mistake is overlooking the domains of functions, especially with sine and cosine when they get close to undefined points. Additionally, be wary of assuming all angles are in radians; mix-ups can lead to incorrect conclusions. Always simplify expressions first and remember to check your work against the original statement—because one small misstep can lead you astray!

preguntas relacionadas

Latest Trigonometry Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad