Pregunta
2. (a) Given the vectors \( p=\binom{m+3}{2-n}, \mathbf{q}=\binom{3 m-1}{n-8} \) and \( p=q \), find the values of \( m \) and \( n \).
Ask by Park French. in Ghana
Feb 13,2025
Solución de inteligencia artificial de Upstudy
Respuesta verificada por el tutor
Responder
\( m = 2 \) and \( n = 5 \).
Solución
To solve for m and n, we equate the corresponding components of the vectors p and q.
The first component of p is m + 3, and the first component of q is 3m - 1. Setting these equal:
m + 3 = 3m - 1
Now, solve for m:
m + 3 = 3m - 1
3 + 1 = 3m - m (add m to both sides and add 1)
4 = 2m
m = 2
Next, equate the second components. The second component of p is 2 - n, and the second component of q is n - 8:
2 - n = n - 8
Solve for n:
2 + 8 = n + n (add n to both sides and add 8)
10 = 2n
n = 5
Thus, the values are:
m = 2 and n = 5
Respondido por UpStudy AI y revisado por un tutor profesional
Como
error msg


Mind Expander
To solve the equation \( p=q \), we equate the corresponding components of the vectors \( p \) and \( \mathbf{q} \): 1. From the first component, we have: \[ m + 3 = 3m - 1 \] Rearranging gives: \[ 3 + 1 = 3m - m \implies 4 = 2m \implies m = 2 \] 2. From the second component, we have: \[ 2 - n = n - 8 \] Rearranging gives: \[ 2 + 8 = n + n \implies 10 = 2n \implies n = 5 \] Thus, the values are \( m = 2 \) and \( n = 5 \).

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium