Pregunta
upstudy study bank question image url

10. Solve the following equation: (round your answer/s to 1 dec.) (1 Point) \( x^{2}-7 x=9 \) No real solution \( x=-0,4 \) OR \( x=-2,3 \) \( x=-0,6 \) OR \( x=0,6 \) \( x=8,1 \) OR \( x=-1,1 \) \( x=1 \) OR \( x=0,4 \) 11. Solve the following equation: (round your answer/s to 1 dec.) (1 Point) \( x^{2}=3 x-9 \) \( x=-0,4 \) OR \( x=-2,3 \) \( x=-0,6 \) OR \( x=0,6 \) \( x=1 \) OR \( x=0,4 \) \( x=8,1 \) OR \( x=-1,1 \)

Ask by Vaughn West. in South Africa
Feb 13,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

10. The solutions are \( x \approx 8.1 \) or \( x \approx -1.1 \). 11. There are no real solutions.

Solución

We begin by writing the given equations in standard quadratic form and then using the quadratic formula where appropriate. ───────────────────────────── Problem 10: ───────────────────────────── The equation is   x² – 7x = 9. Step 1. Rewrite in standard form:   x² – 7x – 9 = 0. Step 2. Apply the quadratic formula:   x = [–b ± √(b² – 4ac)]⁄(2a), with a = 1, b = –7, c = –9. Step 3. Compute the discriminant:   D = (–7)² – 4·1·(–9) = 49 + 36 = 85. Step 4. Solve for x:   x = [7 ± √85]⁄2. Since √85 ≈ 9.2, we have   x ≈ (7 + 9.2)/2 ≈ 16.2/2 ≈ 8.1  and  x ≈ (7 – 9.2)/2 ≈ (–2.2)/2 ≈ –1.1. Thus, rounded to one decimal, the solutions are:   x ≈ 8.1 or x ≈ –1.1. Comparing with the answer choices, the correct match is:   x = 8,1 OR x = -1,1. ───────────────────────────── Problem 11: ───────────────────────────── The equation is   x² = 3x – 9. Step 1. Rewrite in standard form:   x² – 3x + 9 = 0. Step 2. Calculate the discriminant:   D = (–3)² – 4·1·9 = 9 – 36 = –27. Since the discriminant is negative, there are no real solutions for this quadratic. ───────────────────────────── Final Answers: ───────────────────────────── 10. x ≈ 8.1 or x ≈ –1.1 11. No real solution.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To solve the equation \(x^{2}-7x=9\), we can rearrange it to \(x^{2}-7x-9=0\). Using the quadratic formula \(x = \frac{-b \pm \sqrt{b^{2}-4ac}}{2a}\), we identify \(a=1\), \(b=-7\), and \(c=-9\). Calculating gives us \(x = \frac{7 \pm \sqrt{(-7)^{2}-4(1)(-9)}}{2(1)}\), which simplifies to \(x = \frac{7 \pm \sqrt{49+36}}{2}\), or \(x = \frac{7 \pm \sqrt{85}}{2}\). This yields approximately \(x = 8.1\) or \(x = -1.1\). So the first equation gives us \(x = 8.1\) OR \(x = -1.1\). For the second equation \(x^{2}=3x-9\), we can rewrite it as \(x^{2}-3x+9=0\). Again applying the quadratic formula, we have \(a=1\), \(b=-3\), and \(c=9\). The discriminant \(b^{2}-4ac\) is calculated: \((-3)^{2}-4(1)(9) = 9 - 36 = -27\). Since the discriminant is negative, there are no real solutions for this equation. So, the solutions are: First Equation: \(x = 8.1\) OR \(x = -1.1\) Second Equation: No real solution Diving into the history, quadratic equations date back to ancient Babylonians, who managed to solve them geometrically—fascinating, right? They had a knack for solving problems with unknowns using methods that laid the groundwork for modern algebra! Now, when it comes to solving quadratics, a common mistake is neglecting to simplify the discriminant first! Always double-check your calculations for errors, especially when working with negative roots or potential imaginary solutions, so you don’t miss out on those real numbers hiding just beneath!

preguntas relacionadas

Latest Algebra Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad