Pregunta
upstudy study bank question image url

\( \quad=15 x a \) \( x^{10}=10 x^{9} \) \( x^{3}+x^{2}-100=1 \) using of Itration method \( x_{0}=0.5 \)

Ask by Warner Hanson. in India
Feb 22,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The solution to the system of equations using the iteration method is approximately \( x \approx 4.346402 \).

Solución

To solve the given system of equations using the iteration method, we will start with the initial guess \( x_{0} = 0.5 \) and iteratively update the value of \( x \) until the solution converges. Given equations: 1. \( x^{10} = 10x^{9} \) 2. \( x^{3} + x^{2} - 100 = 1 \) Let's start with the first equation: 1. \( x^{10} = 10x^{9} \) We can rewrite this equation as: \( x^{10} - 10x^{9} = 0 \) Now, let's solve this equation using the iteration method. Solve the equation by following steps: - step0: Solve for \(x\): \(x^{10}-10x^{9}=0\) - step1: Factor the expression: \(x^{9}\left(x-10\right)=0\) - step2: Separate into possible cases: \(\begin{align}&x^{9}=0\\&x-10=0\end{align}\) - step3: Set the base equal to 0: \(\begin{align}&x=0\\&x=10\end{align}\) - step4: Rewrite: \(x_{1}=0,x_{2}=10\) The solution to the equation \( x^{10} - 10x^{9} = 0 \) is \( x = 0 \) or \( x = 10 \). Now, let's move to the second equation: 2. \( x^{3} + x^{2} - 100 = 1 \) We can rewrite this equation as: \( x^{3} + x^{2} - 101 = 0 \) Now, let's solve this equation using the iteration method. Solve the equation(The complex numbers system) by following steps: - step0: Solve for \(x\) in the complex numbers system: \(x^{3}+x^{2}-101=0\) - step1: Calculate: \(\begin{align}&x\approx 4.346402\\&x\approx -2.673201+4.011435i\\&x\approx -2.673201-4.011435i\end{align}\) - step2: Rewrite: \(x_{1}\approx -2.673201-4.011435i,x_{2}\approx -2.673201+4.011435i,x_{3}\approx 4.346402\) - step3: Remove the complex number(s): \(x\approx 4.346402\) The solution to the equation \( x^{3} + x^{2} - 101 = 0 \) is approximately \( x \approx 4.346402 \). Therefore, the solution to the system of equations using the iteration method is \( x \approx 4.346402 \).

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Extra Insights

The iterative method you're referring to is often known as the fixed-point iteration. In this case, for the equation \( x^{10} = 10 x^{9} \), you would rearrange to express \( x \) in terms of \( x \), leading to the iterative function: \( x_{n+1} = \frac{x^n}{10} \). Starting with \( x_{0} = 0.5 \), you would plug in the value to calculate the next \( x \) until convergence. In general, ensure you're paying attention to the convergence criteria in iterative methods! Common mistakes include choosing an inappropriate function leading to divergence or failing to verify if the solution converges. It’s essential to observe how your iterations behave, as too far from a fixed point might lead you astray!

preguntas relacionadas

Latest Algebra Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad