Pregunta
upstudy study bank question image url

EXERCISE 10 (a) Discuss the nature of the roots of the following quadratic equations, without solving the equations: \( \begin{array}{llll}\text { (1) } x^{2}=0 & \text { (2) } x^{2}=16 & \text { (3) } x^{2}=7 \\ \text { (4) } x^{2}=-4 & \text { (5) }(x-2)^{2}=4 & \text { (6) }(x+3)^{2}=12 \\ \text { (7) } \quad(x+1)^{2}=0 & \text { (8) }(x-5)^{2}=-1 & \text { (9) } x^{2}-9=0\end{array} \)

Ask by Campbell Jimenez. in South Africa
Feb 18,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

- **Equation (1):** One real root (double root) - **Equation (2):** Two distinct real roots - **Equation (3):** Two distinct real roots - **Equation (4):** Two complex roots - **Equation (5):** Two distinct real roots - **Equation (6):** Two distinct real roots - **Equation (7):** One real root (double root) - **Equation (8):** Two complex roots - **Equation (9):** Two distinct real roots

Solución

To discuss the nature of the roots of the given quadratic equations, we can analyze each equation based on the standard form of a quadratic equation, which is \( ax^2 + bx + c = 0 \). The nature of the roots can be determined by the discriminant \( D = b^2 - 4ac \). 1. **Equation (1): \( x^2 = 0 \)** - This can be rewritten as \( x^2 - 0 = 0 \) (where \( a = 1, b = 0, c = 0 \)). - Discriminant: \( D = 0^2 - 4(1)(0) = 0 \). - **Nature of roots**: One real root (a double root). 2. **Equation (2): \( x^2 = 16 \)** - Rewritten as \( x^2 - 16 = 0 \) (where \( a = 1, b = 0, c = -16 \)). - Discriminant: \( D = 0^2 - 4(1)(-16) = 64 \). - **Nature of roots**: Two distinct real roots. 3. **Equation (3): \( x^2 = 7 \)** - Rewritten as \( x^2 - 7 = 0 \) (where \( a = 1, b = 0, c = -7 \)). - Discriminant: \( D = 0^2 - 4(1)(-7) = 28 \). - **Nature of roots**: Two distinct real roots. 4. **Equation (4): \( x^2 = -4 \)** - Rewritten as \( x^2 + 4 = 0 \) (where \( a = 1, b = 0, c = 4 \)). - Discriminant: \( D = 0^2 - 4(1)(4) = -16 \). - **Nature of roots**: Two complex roots (no real roots). 5. **Equation (5): \( (x-2)^2 = 4 \)** - Rewritten as \( (x-2)^2 - 4 = 0 \) (which expands to \( x^2 - 4x + 0 = 0 \)). - Discriminant: \( D = (-4)^2 - 4(1)(0) = 16 \). - **Nature of roots**: Two distinct real roots. 6. **Equation (6): \( (x+3)^2 = 12 \)** - Rewritten as \( (x+3)^2 - 12 = 0 \) (which expands to \( x^2 + 6x - 12 = 0 \)). - Discriminant: \( D = 6^2 - 4(1)(-12) = 36 + 48 = 84 \). - **Nature of roots**: Two distinct real roots. 7. **Equation (7): \( (x+1)^2 = 0 \)** - Rewritten as \( (x+1)^2 - 0 = 0 \) (which is already in standard form). - Discriminant: \( D = 0^2 - 4(1)(0) = 0 \). - **Nature of roots**: One real root (a double root). 8. **Equation (8): \( (x-5)^2 = -1 \)** - Rewritten as \( (x-5)^2 + 1 = 0 \) (which expands to \( x^2 - 10x + 26 = 0 \)). - Discriminant: \( D = (-10)^2 - 4(1)(26) = 100 - 104 = -4 \). - **Nature of roots**: Two complex roots (no real roots). 9. **Equation (9): \( x^2 - 9 = 0 \)** - This can be factored as \( (x-3)(x+3) = 0 \) (where \( a = 1, b = 0, c = -9 \)). - Discriminant: \( D = 0^2 - 4(1)(-9) = 36 \). - **Nature of roots**: Two distinct real roots. ### Summary of the Nature of Roots: 1. One real root (double root) 2. Two distinct real roots 3. Two distinct real roots 4. Two complex roots 5. Two distinct real roots 6. Two distinct real roots 7. One real root (double root) 8. Two complex roots 9. Two distinct real roots

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Mind Expander

In the equations provided, we can describe the nature of the roots based on the relationships involving squares and constants. For \(x^{2}=0\) (1), there is one real root at \(x=0\) as the square of a number can only be zero if the number itself is zero. For \(x^{2}=16\) (2), there are two distinct real roots: \(4\) and \(-4\) since both squares yield \(16\). In the third equation \(x^{2}=7\) (3), again we find two distinct real roots: \(\sqrt{7}\) and \(-\sqrt{7}\). In contrast, in \(x^{2}=-4\) (4), there are no real roots because a square cannot be negative, indicating complex numbers are involved. For \((x-2)^{2}=4\) (5) and \((x+3)^{2}=12\) (6), both yield two distinct real roots, indicating the roots are found at \(x=2\pm2\) and \(x=-3\pm\sqrt{12}\), respectively. Equation \((x+1)^{2}=0\) (7) has a double root at \(x=-1\) because it is a perfect square. Lastly, \((x-5)^{2}=-1\) (8) shows no real roots, indicating that solutions would require complex numbers, while \(x^{2}-9=0\) (9) gives us two distinct real roots \(3\) and \(-3\).

preguntas relacionadas

Latest Algebra Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad