Name: AD\# \( \qquad \) Equal Values Method Find the point of intersection (P.O.I.) for each pair of lines by using the Equal Values Method. 1. \[ \text { 1. } \quad \begin{array}{l} y=x+2 \\ y=2 x-1 \end{array} \] 2. \[ \begin{array}{l} y=3 x+5 \\ y=4 x+8 \end{array} \] 4. \[ \begin{array}{l} y=3-2 x \\ y=1+2 x \end{array} \] 6. \( y=-\frac{2}{3} x+4 \) \[ y=\frac{1}{3} x-2 \] 7. \[ \begin{array}{l} y=4.5-x \\ y=-2 x+6 \end{array} \] 8. \[ \begin{array}{l} y=4 x \\ y=x+1 \end{array} \]
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Extra Insights
To find the points of intersection for each pair of equations using the Equal Values Method, set the equations equal to each other and solve for \(x\). 1. **For the first pair:** \[ x + 2 = 2x - 1 \implies 2 + 1 = 2x - x \implies x = 3 \] Substitute \(x = 3\) back into either equation to find \(y\): \[ y = 3 + 2 = 5 \] Thus, the P.O.I. is \((3, 5)\). 2. **For the second pair:** \[ 3x + 5 = 4x + 8 \implies 5 - 8 = 4x - 3x \implies x = -3 \] Substitute \(x = -3\) into either equation: \[ y = 3(-3) + 5 = -9 + 5 = -4 \] So, the P.O.I. is \((-3, -4)\). 4. **For the third pair:** \[ 3 - 2x = 1 + 2x \implies 3 - 1 = 2x + 2x \implies 2 = 4x \implies x = \frac{1}{2} \] Substitute \(x = \frac{1}{2}\) into either equation: \[ y = 3 - 2 \left(\frac{1}{2}\right) = 3 - 1 = 2 \] Hence, the P.O.I. is \(\left(\frac{1}{2}, 2\right)\). 6. **For the fourth pair:** \[ -\frac{2}{3}x + 4 = \frac{1}{3}x - 2 \implies 4 + 2 = \frac{1}{3}x + \frac{2}{3}x \implies 6 = x \] Substitute \(x = 6\): \[ y = -\frac{2}{3}(6) + 4 = -4 + 4 = 0 \] The P.O.I. is \((6, 0)\). 7. **For the fifth pair:** \[ 4.5 - x = -2x + 6 \implies 4.5 - 6 = -x + 2x \implies -1.5 = x \] Substitute \(x = -1.5\): \[ y = 4.5 - (-1.5) = 4.5 + 1.5 = 6 \] Therefore, the P.O.I. is \((-1.5, 6)\). 8. **For the sixth pair:** \[ 4x = x + 1 \implies 4x - x = 1 \implies 3x = 1 \implies x = \frac{1}{3} \] Substitute \(x = \frac{1}{3}\): \[ y = 4 \left(\frac{1}{3}\right) = \frac{4}{3} \] Thus, the P.O.I. is \(\left(\frac{1}{3}, \frac{4}{3}\right)\).
